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Abstract
Background and Objectives
Patterns of electrical activity in the brain (EEG) during sleep are sensitive to various health
conditions even at subclinical stages. The objective of this study was to estimate sleep EEG-
predicted incidence of future neurologic, cardiovascular, psychiatric, and mortality outcomes.

Methods
This is a retrospective cohort study with 2 data sets. The Massachusetts General Hospital
(MGH) sleep data set is a clinic-based cohort, used for model development. The Sleep Heart
Health Study (SHHS) is a community-based cohort, used as the external validation cohort.
Exposure is good, average, or poor sleep defined by quartiles of sleep EEG-predicted risk. The
outcomes include ischemic stroke, intracranial hemorrhage, mild cognitive impairment, dementia,
atrial fibrillation, myocardial infarction, type 2 diabetes, hypertension, bipolar disorder, depression,
and mortality. Diagnoses were based on diagnosis codes, brain imaging reports, medications, cog-
nitive scores, and hospital records.We used the Cox survival model with death as the competing risk.

Results
There were 8673 participants from MGH and 5650 from SHHS. For all outcomes, the model-
predicted 10-year risk was within the 95% confidence interval of the ground truth, indicating
good prediction performance. When comparing participants with poor, average, and good sleep,
except for atrial fibrillation, all other 10-year risk ratios were significant. The model-predicted 10-
year risk ratio closely matched the observed event rate in the external validation cohort.

Discussion
The incidence of health outcomes can be predicted by brain activity during sleep. The findings
strengthen the concept of sleep as an accessible biological window into unfavorable brain
and general health outcomes.

Introduction
Good sleep and healthy life are closely associated. For example, people with dementia have
difficulty falling asleep and have reduced delta oscillations (1–4 Hz) in their brain waves
(EEG) during deep sleep compared with matched controls without cognitive problems.1
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People with depression or anxiety tend to have insomnia and
increased sleep fragmentation compared with people with-
out depression or anxiety while controlling for covariates.2

People with atrial fibrillation or congestive heart failure have
fragmented sleep beyond the frequently present central and
obstructive sleep apnea compared with controls.3 Normal noc-
turnal dipping of blood pressure during sleep is associated with
overall better cardiovascular and cerebrovascular outcomes
compared with people who lack or have diminished nocturnal
dipping.4 In a large-scale international study, multiple aspects of
sleep disturbance were found to be positively associated with
existing conditions of stroke,5 although sleep microstructures
such as EEG were not examined.

The ability to use physiologic measurements of sleep, such as
EEG, to predict future incident health outcomes is significant
because it could allow early interventions to prevent un-
favorable outcomes. Because sleep is not only a window into
sleep health but also a causal determinant, such interventions
could also aim to improve sleep quality,6-9 which is a major goal
of sleep medicine and the pharmaceutical industry.10 Yet, how to
measure sleep quality remains unclear. Conventional metrics in-
cluding sleep stages and arousals seem limited and are highly
down-sampled summaries of sleep physiology and pathology.
One approach is to develop measures of sleep quality that are
associated with clinical outcomes by design. Along these lines,
there are several recently introduced sleep-based biomarkers
measuring different aspects of sleep quality that have been related
to outcomes, including the sleep brain age index (BAI),11 which
attempts to measure the biological (as opposed to chronologic)
age of the brain; the odds ratio product12 measuring sleep depth;
cardiopulmonary coupling13 measuring sleep stability; and hyp-
oxic burden14measuring the extent of hypoxia due to apnea across
the night. However, these biomarkers of sleep quality were not
designed to, and do not explicitly predict, future health outcomes.

We describe measures of sleep quality that are explicitly designed
to quantify the risk of 11 future health outcomes.We characterize
the risk of these outcomes following baseline sleepmeasurements
and investigate sleep features thatmake thesepredictions possible.
As a comparison, we also compute the risk ratios of these out-
comes using apnea-hypopnea index (AHI), hypoxic burden, re-
spiratory event duration, BAI, sleep efficiency, and wake after
sleep onset (WASO). Note that our objective is to study whether
sleep EEG contains information about these outcomes, rather
than determining whether sleep EEG is a better predictor than
other exposures. We also provide a score computation table
(eTable 1, links.lww.com/CPJ/A484) and a score-to-risk con-
version chart (eFigure 1) to compute the risks. We validate the
results in an external large community-based sleep data set.

Methods
Study Design
This was an observational retrospective cohort study from
2008 to January 2020. As a clinic-based cohort, polysomnogram

(PSG) was indicated because of suspected sleep disorders. Par-
ticipants were followed up by querying the electronic health
records from the Research Patient Data Registry in February
2020, sourced from all hospitals under Mass General Brigham
(MGB) including both inpatient and outpatient records. In-
clusion criteria were those who (1) underwent a diagnostic study
(not positive airway pressure (CPAP) treatment) and (2) were
18 years and older at the time of the PSG. Exclusion criteria were
as follows: (1) developed the outcome before the baseline sleep
recording, (2) PSGs with duration shorter than 2.5 hours (300 ×
30 second epochs), and (3) took sodium oxybate on the night of
the sleep study because this drug markedly increases slow-wave
sleep and delta power. For participants with multiple PSGs, we
used only the PSG from the earliest visit, which is referred to as
the baseline recording. The flowchart is shown in eFigure 2.

For external validation, we used the SleepHeart Health Study
(SHHS) data, available from the National Sleep Research
Resource.15,16 SHHS is a community-based cohort. We used
the PSGs from sleep visit 1. We studied 3 outcomes available
in this data set: ischemic stroke, myocardial infarction, and
death. Inclusion criteria were (1) EEG signals and annota-
tions available, (2) at least 3 sleep stages were present in the
EEG, and (3) the sleep recording was at least 2.5 hours long.

Standard Protocol Approvals, Registrations,
and Patient Consents
The Mass General Brigham Institutional Review Board
(IRB) approved the analysis of PSG acquired in the Mas-
sachusetts General Hospital Sleep Clinic, with a waiver of
informed consent for this retrospective study.

Sleep EEG Preprocessing and
Feature Extraction
For the MGH data set, each PSG includes 6 EEG channels:
F3-M2, F4-M1, C3-M2, C4-M1, O1-M2, and O2-M1. The
sampling frequency was 200 Hz. For SHHS, each PSG in-
cludes 2 EEG channels: C3-M2 and C4-M1. The sampling
frequency was 125Hz. EEG signals were first notch filtered at
60 Hz and then band-pass filtered from 0.3 to 35 Hz. Every
30-second epoch was staged into one of W, N1, N2, N3, or R
following American Academy of Sleep Medicine (AASM)
guidelines. We combined N1, N2, and N3 into NREM (1) to
accommodate the relatively low number of N1 epochs and
(2) to avoid the artificial boundary between N2 and N3. We
excluded W epochs because they are typically noisy because
of artifacts related to movements and eye blinks. Therefore,
we had 2 sleep stages: NREM and REM. To remove artifacts,
we excluded 30-second epochs containing absolute signal
amplitudes higher than 500 μV or containing flat signal
(standard deviation less than 0.2 μV) lasting longer than 5
seconds.

Spindle and slow oscillation patterns were detected using
Luna17 during NREM sleep. Spindles were detected based
on a wavelet method, with a central frequency of 13.5 Hz and
a wavelet cycle number set to 12. Slow oscillations were
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detected by first band-pass filtering between 0.2 Hz and 4.5
Hz, followed by detecting positive-to-negative zero crossings
in the filtered signal, and then choosing intervals between 0.8
and 2 seconds having negative peak higher than 1.5 times the
median voltage across all zero crossings and peak-to-peak
amplitude higher than 1.5 times the median.

When using sleep EEG as the exposure, the signals were first
preprocessed as discussed in the eMethods (links.lww.com/
CPJ/A484), including spindle and slow oscillation detection.
Then for each 30-second epoch, we extracted features from
both spectral and temporal domains of sleep EEG. Spectral
features included mean and kurtosis (a measure of extreme
values to represent bursts) of band powers across 2-second
sub-epochs from delta (1 Hz ≤ f < 4 Hz), theta (4 Hz ≤ f < 8
Hz), alpha (8 Hz ≤ f < 12 Hz), and sigma (12 Hz ≤ f < 16 Hz)
bands and their band power ratios. Temporal features in-
cluded density, amplitude, frequency, and duration of spin-
dles; amplitude and density of slow oscillations (0.5–1.25
Hz); and coupling of spindles and slow oscillations. For each
30-second NREM epoch, we first extracted 57 features, and
then each feature was averaged across all NREM epochs to
represent the whole night. Similarly, for each 30-second
REM epoch, we first extracted 21 features, and then each
feature was averaged across all REM epochs. In addition, we
adjusted for 8 covariates in each outcome prediction model
as discussed in the “Covariates” subsection. In total, we had
86 features to summarize the information over the whole
night of sleep. A full list of sleep EEG features is provided in
eTable 2. The univariate hazard ratio of each sleep EEG
feature after adjusting for covariates (feature importance) is
shown in eFigure 3.

Outcomes
MCI and dementia were ascertained using problem lists,
medications (donepezil, rivastigmine, memantine, galant-
amine), and cognition scores when available, as described in
prior work.1 In brief, dementia was defined as at least one of
the following: taking at least 1 dementia-related medication
and having an ICD diagnosis code containing at least 1 de-
mentia key phrase (“dementia” or “Alzheimer”), a problem
list containing at least 1 dementia key phrase, MoCA score
≤19, or MMSE score ≤25. MCI was defined as first not
qualifying for dementia and then having the problem list
contain an MCI key phrase (“MCI,” “mild cognitive im-
pairment,” or “minimal cognitive impairment”) or MoCA
score between 20 and 25. Because the diagnosis of MCI or
dementia prevents another (competing risk), to simplify the
analysis, we combined MCI and dementia using whichever
was documented first as a composite outcome. Note that 333
participants (3.8%) had a MoCA score and 343 participants
(4.0%) had a MMSE score. We had 1 independent neurol-
ogist review the clinical notes and provide gold standard
assessments for 160 participants, including 68 dementia, 50
MCI, 16 symptomatic, and 26 no dementia participants.
Definitions were developed to maximize agreement between
the gold standard and the ICD and text-based outcomes. The

rules were also extensively vetted by a neurologist special-
izing in memory disorders.

One author (M.A.A.) independently reviewed the cases for
other outcomes other than dementia, MCI, and mortality:
first, randomly selected 10 predicted positive and 10 pre-
dicted negative cases, adjusted the keywords andmedications
to make sure the 20 cases were all correct, and then applied
the rules to all the cases. Specifically, ischemic stroke and
intracranial hemorrhage were ascertained using ICD di-
agnostic codes (ICD-10 and ICD-9 converted from ICD-10)
and brain imaging reports. The ICD codes are listed in
eTable 3 (links.lww.com/CPJ/A484). For the brain imaging
reports, we used regular expressions to identify brain-related
imaging reports (see eTable 4), then extracted the “im-
pression” part of the report, and finally used regular ex-
pressions to identify reports describing ischemic stroke or
intracranial hemorrhage (eTable 4). For atrial fibrillation,
myocardial infarction, type 2 diabetes, hypertension, bi-
polar disorder, and depression, we used disease-related
medications combined with ICD codes beacuse the
medications can be broad and nonspecific. The ICD codes
are listed in eTable 3. The generic and brand names of
disease-related medications are given in eTable 5. Finally,
mortality was determined from the MGB Enterprise Data
Warehouse (EDW), which covers all hospitals un-
der MGB.

When participants were lost to follow-up (leaving the hos-
pital system, never developing the outcome, or death before
developing the outcome of interest, etc), their outcome sta-
tuses were included in the time-to-event analysis as censored.
We used the last active date in all hospital records as the date
of censoring.

For the external validation set SHHS, 3 of the 11 outcomes
were available, including ischemic stroke, myocardial in-
farction, and death. Stroke was broadly defined as a con-
stellation of neurologic symptoms with a sudden onset that
lasts at least 24 hours or until death. The ischemic type was
reviewed by physicians. Myocardial infarction was defined by
a combination of chest pain, ECG tracings, and myocardial
enzyme profiles. Date of death was determined using multi-
ple approaches as described previously18 where all known
contacts for the participant were called to determine the
participant’s vital status and both local death registries and
the National Death Index were searched for their name or
social security number. If the participant had not developed
the outcome or was deceased at the last contact, the time to
event was censored.

Exposure
Exposure was defined as 3 levels: good, average, and poor
sleep. When we used sleep EEG, the 3 levels were based on
the sleep EEG-predicted score (see Survival Analysis below).
Good sleep was defined as having a score lower than the 25%
percentile of the training set, average sleep being between
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25% and 75% percentiles, and poor sleep being higher than
the 75% percentile of the training set. Other alternative ex-
posures were similarly analyzed, including AHI (scored at 3%
desaturation threshold), hypoxic burden, respiratory event
duration, brain age index, sleep efficiency, and WASO. For
AHI, good sleep was defined as <15/hour, average sleep
15–30/hour, and poor sleep >30/hour. We also obtained the
Framingham Risk Score (FRS)19 for a subset of the MGH
data set. For myocardial infarction, we checked the Spear-
man correlation of the sleep EEG-predicted score vs FRS and
the prediction performance of FRS using the metrics in-
troduced below.

Covariates
Eight covariates were included to address potential con-
founding, including age; sex; body mass index (BMI) at the
baseline sleep study; and 5 categories of medications that can
affect sleep: benzodiazepines, antidepressants, sedatives,
antiseizure drugs, and stimulants. Medications refer to those
taken on the night of the sleep study if available from the pre-
sleep questionnaire or, when not available, documented in
the electronicmedical record within 1month before the PSG.
The brand and generic medication names of the 5 categories
of medications are available in eTable 6 (links.lww.com/
CPJ/A484). We stratified results by sex because it is a pos-
sible effect modifier.

For SHHS, benzodiazepine use was determined based on
self-report within 2 weeks before the PSG. Medications were
later categorized by physician review. Antidepressant medi-
cation use was determined similarly, including both tricyclic
and non-tricyclic antidepressants (excluding monoamine
oxidase inhibitors). Stimulant use was determined similarly.
Information on sedative and antiseizure medication use was
not available for the SHHS.

Survival Analysis
For each outcome prediction model other than death, we
modeled death as a competing outcome in a Cox pro-
portional hazard model. To account for the large number
of features and to improve interpretability, we selected
features using ElasticNet. To account for the collinearity
among the same EEG features from different brain regions
(frontal, central, and occipital), for each outcome, we fit 3
separate models with features from each brain region. The
output hazard was then averaged across the 3 brain re-
gions. To summarize the risk of developing an outcome
over time, we calculated the cumulative incidence curves
(CICs). The models were adjusted for the covariates de-
scribed in the Covariates subsection. The model was
trained using nested 5-fold cross-validation, detailed in
the eMethods (links.lww.com/CPJ/A484). The sleep
EEG-predicted score of a participant is defined as β∙x,
which is a term in the hazard function of the Cox model,
λðtÞ = λ0ðtÞexpðβ∙xÞ. The score is a weighted sum of all
sleep EEG features x of that participant, where the weight
is the Cox model coefficient β.

Evaluation Metrics
Cumulative Incidence Curves
To estimate the CIC for each stratum, a Cox model was first
fitted using the stratified hazard in the training set as the only
input and then a CIC was obtained for a specific hazard
stratum. To obtain out-of-sample estimates, 5 CICs were
obtained from held-out testing sets and then averaged. To get
the ground truth CIC for each stratum, we calculated the
Aalen-Johansen (AJ) estimate to the held-out testing sets
using the stratified hazard, where the 25% and 75% percen-
tiles came from corresponding in-sample training sets.

Effect Sizes
Weused 2 risk ratios at 10 years post-sleep study as the clinically
meaningful metric: one comparing poor sleep vs average sleep,
and another one comparing average sleep vs good sleep. To
evaluate prediction performance, we checked whether the 95%
confidence intervals of the ground truth 10-year risk from theAJ
estimator and Cox model–predicted 10-year risk overlap. We
also evaluated C-index in the supplemental material, including
C-index for all outcomes (eTable 7, links.lww.com/CPJ/
A484), in different AHI strata (eFigure 4), in people with
insomnia, hypersomnia, and restless leg syndrome (eFigure 5,
participant numbers of these comorbidities in eTable 8), and
using covariates only (eTable 9).

Statistical Analysis
For estimating effect sizes, covariates were adjusted for con-
founding by holding them to constant values and only varying
the sleep EEG measures. For multiple comparison correction,
we performed Bonferroni correction when investigating the
significances of individual sleep EEG features (univariate anal-
ysis; eFigure 3, links.lww.com/CPJ/A484), but not for other
analyses because other analyses were intended to estimate ef-
fect size rather than for hypothesis testing. We defined statis-
tical significance as a 2-sided p < 0.05. All confidence intervals
were obtained by bootstrapping 1000 times and taking the
2.5% and 97.5% percentiles as the lower and upper bounds,
respectively, to form a 95% percentile confidence interval. The
analyses were performed using Python 3.7 and R 4.2.

Data Availability
The MGH data set can be requested from the corresponding
author with a written data sharing agreement. The SHHS
data set can be requested from sleepdata.org/datasets/shhs.
The codes to reproduce the results are available at github.
com/mghcdac/sleep-outcome-prediction. The online tool
to predict the risk given a sleep recording (EDF format and
sleep stage annotations) will be hosted on Brain Data Sci-
ence Platform at bdsp.io/.

Results
Cohort Characteristics
The MGH cohort characteristics stratified by outcomes are
summarized in Table 1. The detailed characteristics are
provided in eTable 8 (links.lww.com/CPJ/A484). In total,
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there were 8,673 participants. The average age at the baseline
sleep EEG was 51.0 years; 51.5% were female. The average
BMI was 29.9 kg/m2. The average AHI was 9.4/hour. There
were 6652 White (77%), 527 Black (6%), 414 Hispanic
(5%), 332 Asian (4%), 17 American native (0.2%), 1 Middle
Eastern (0.01%), and 730 unknown (8%) participants. The
median follow-up time ranged from 4.5 to 5.4 years across
outcomes. The average time to event ranged from 2.4 to 4.1
years across outcomes. By a maximum of 12 years after the
baseline sleep study, depression, hypertension, and MCI/
dementia were the top 3 outcomes with the highest incidence
rate; intracranial hemorrhage, ischemic stroke, and bipolar dis-
order were the least. For MGH, there were 4558 of 8673 par-
ticipants (53%) with AHI ≥5/hour. For SHHS, there were 2900
of 5650 participants (51%) with AHI ≥5/hour.

Cumulative Incidences
In Figure 1, we show the cumulative incidence curves of 11
outcomes for 3 strata: poor, average, and good sleep. These
curves were obtained by fixing values of the covariates so that
the estimated differences in risk were only related to the
differences in characteristics of sleep brain activity. Overall,
depression had the highest cumulative incidence at 10 years
after the baseline sleep recording, followed by hypertension
(consistent with Table 1). Depression also showed the most
substantial sex dependence. EEG spectrograms from the
good and poor sleep groups for each outcome are shown in
eFigure 6 (links.lww.com/CPJ/A484). In Figure 2, we show
both the ground truth and model-predicted 10-year risk for
the average sleep group. All 95% confidence intervals over-
lapped, indicating good model performance. The overall
smaller confidence interval from the model prediction than

the ground truth is because of the parametric constraint
imposed by the Cox model.

In Figure 3, we show 2 example EEG hypnograms and
spectrograms, one having relatively high 10-year risk of de-
mentia (4.3%) and the other having relatively low risk
(0.9%). They were selected such that other covariates have
similar values. It is noticeable that the 2 spectrograms differ
in many ways, including more awake, less delta power in
NREM stages, less spindles in N2, and more delta power
during REM. As quantified by the bar plot, the top different
sleep EEG feature between the 2 examples is delta-to-alpha
band power ratio.

Ten-Year Risk Ratios
In Table 2, we show the sleep EEG-predicted 10-year risk ratios
for poor vs average and average vs good sleep in both female and
male participants. Except for atrial fibrillation in poor vs average
sleep, all others showed risk ratios significantly higher than 1,
indicating that sleep is predictive of future health outcomes. The
average 10-year risk ratio across all outcomes using sleep EEG
was 3.8 when comparing poor vs average sleep and 3.5 when
comparing average vs good sleep, andmale and female strata had
the same results. The average 10-year risk ratios across all out-
comes using alternative exposures (AHI, hypoxic burden, re-
spiratory event duration, brain age index, sleep efficiency, and
WASO) were all lower than that of using sleep EEG (eTable 10,
links.lww.com/CPJ/A484).

For myocardial infarction, we additionally checked the FRS.
The FRS was positively correlated with sleep EEG-predicted
score at Spearman rho 0.42 (p < 0.001; n = 2161). In female

Table 1 MGH Cohort Characteristics

Outcome Number of participantsa Average time to event (y) Age (y)b Sex (%male) BMIb (kg/m2) AHIb (/hour)

Overall 8673 — 51.0 (16.2)c 49.4% 29.9 (7.0) 9.4 (11.7)

Intracranial hemorrhage 32 3.3 62.8 (16.1) 62.5% 29.2 (8.5) 11.5 (12.5)

Ischemic stroke 87 3.1 63.2 (12.7) 66.7% 30.4 (6.2) 13.8 (15.5)

Dementia 181 2.4 70.3 (10.8) 51.9% 29.2 (6.2) 11.9 (11.9)

MCI or Dementia 443 2.7 68.3 (9.9) 54.4% 28.7 (5.9) 11.7 (13.0)

Atrial fibrillation 282 3.1 64.1 (11.9) 58.5% 30.9 (6.7) 14.5 (16.1)

Myocardial infarction 185 3.6 64.5 (13.1) 56.2% 31.1 (6.5) 14.5 (16.4)

Type 2 diabetes 317 3.7 59.5 (14.6) 48.6% 33.2 (8.0) 15.3 (16.6)

Hypertension 673 2.8 53.0 (14.1) 50.7% 31.0 (7.6) 10.6 (12.3)

Bipolar disorder 105 3.2 48.6 (15.9) 33.3% 32.4 (8.7) 8.4 (10.5)

Depression 978 3.3 52.1 (15.2) 34.8% 31.4 (7.3) 9.8 (12.5)

Death 372 4.1 67.7 (13.8) 58.1% 30.5 (7.3) 13.8 (15.1)

a Number of participants who developed each outcome before January 2020 (last date included in the study).
b At the time of baseline sleep study.
c Numbers in parenthesis for age, BMI, and AHI are standard deviations.
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Figure 1 Cumulative Incidence of the 11 Outcomes in Female (Left of Each Subplot) and Male (Right of Each Subplot)
Participants

Each subplot shows the cumulative incidence for one outcome. Cumulative incidence is the proportion of a population at risk that develops the outcome over
a specified time. For each outcome, there are 3 cumulative incidence curves: poor sleep (risk score is within the upper 75th percentile, red), average sleep (risk
score between the 25th and 75th percentiles, black), and good sleep (risk score lower than the 25th percentile, blue). The dashed lines represent ground truth
risks from a nonparametric estimator. Note the different y-axis maximum values. The shaded areas indicate 95% confidence intervals. To ensure these
estimates reflect out-of-sample performance, each curve is the average of the 5 curves from the testing sets in cross-validation.

Figure 2 Ground Truth (Black) and Model-Predicted 10-Year Risk (Red) for the Average Sleep Group for Each Outcome,
Stratified by Sex: Female (A) and Male (B)

Numbers indicate the 10-year risk as percentage. Error bars indicate the 95% confidence interval. AFib = atrial fibrillation; BD = bipolar disorder; Dem =
dementia; Dep = depression; HTN = hypertension; ICH = intracranial hemorrhage; IS = ischemic stroke; MCI = mild cognitive impairment; MI = myocardial
infarction; T2D = type 2 diabetes.
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participants, the FRS had a higher 10-year risk ratio at 34.4
(7.7–46.8) than the sleep EEG at 9.8 (7.2–56.7) when com-
paring poor vs good sleep. In male participants, the FRS had a
higher 10-year risk ratio at 33.6 (7.9–46.5) than the sleep EEG at
9.2 (7.0–57.4). Owing to the reduced sample size with available
FRS, the confidence interval was wider. Although the sleep EEG
had a lower 10-year risk ratio than FRS, our objective was to
show that sleep EEG also contains information about incident
myocardial infarction, not to compare sleep EEG with FRS.

External Validation
The SHHS cohort characteristics stratified by outcomes are
provided in eTable 11 (links.lww.com/CPJ/A484). In total,
there were 5650 participants included from sleep visit 1. The
average age at the time of the sleep study was 63.1 years; 52.3%
were female. The average BMI was 28.2 kg/m2. The average
AHI was 10.2/hour. In eTable 12, we quantify the 10-year risk
ratios after the baseline sleep recording. The results indicate
that the confidence intervals overlap between ground truth and
prediction for 3 outcomes (ischemic stroke, myocardial in-
farction, and mortality); hence, these risk prediction models
developed on the MGH cohort generalize to the external
community-based SHHS cohort.

Discussion
The results show that the content of brain electrical activity
during sleep is predictable of a wide range of future health

outcomes. The risk scores developed in this work can be
viewed as outcome-associated measures of sleep quality
scores (eTable 1 and eFigure 1, links.lww.com/CPJ/A484).
We discuss the significance of the ability of sleep EEG to
predict development of mild cognitive impairment, de-
mentia, and cardiovascular outcomes and mortality. We
discuss other outcomes, including subjective measures, and
potential mechanisms in eDiscussion.

The finding that incident MCI and dementia are predictable
from the sleep EEG is concordant with observations in prior
work that many neurodegenerative diseases, including Alz-
heimer disease (AD) and Parkinson disease (PD), often ex-
hibit sleep disturbances many years before other clinical
symptoms develop.

Sleep fragmentation and changes in NREM delta power are
early features of several transgenic mice models of AD.20

APP/PS1 mutant mice already exhibit a different spectral
profile than wild-type mice as early as 3 months, which is the
pre-plaque stage.21 In concordance, several studies have
shown that in people already diagnosed with AD, sleep is
more fragmented and the NREM sleep has reduced slow
waves,1,22 spindles,23 and K-complexes24 while having in-
creased low-frequency oscillatory activity during REM
sleep.23 Sleep disturbances occur at early phases of AD. For
example, in a study of elderly participants including 25
healthy participants and 25 with MCI, sleep was found to be

Figure 3 Two Examples of Sleep Hypnograms and EEG Spectrograms With High and Low 10-Year Risk of Developing
Dementia

(A) A 62-year-old woman with a relatively high predicted 10-year risk. The top panel is the hypnogram; REM sleep is indicated in red. The bottom panel is the
spectrogram of the EEG averaged from 2 central channels (C3-M2 and C4-M1). The x-axis is time of the day. The y-axis is frequency in Hz. The color indicates
power spectral density on a log scale, in decibels (dB), where higher values are closer to red and lower values are closer to blue. (B) The bottom example is
froma57-year-oldwomanwhohas a relatively low predicted 10-year risk. These 2 example participantswere selected so that they have similar age around 60
years, same sex, BMI around 30 kg/m2, and no medications taken on the night of sleep recording while having different 10-year risks. (C) The top 2 features
that contribute most to the difference in dementia risk between panel A and panel B. The contribution is defined as the difference in the feature value time
model coefficient. The 2 features are delta-to-alpha ratio at NREM sleep at the frontal channel and central channel, which reflects the relative amount of slow
wave, implying sleep depth. The one with high dementia risk (panel A) has a lower relative amount of slow wave, i.e., lighter sleep depth; and the one with
lower dementia risk (panel B) has a higher relative amount of slow wave, i.e., deeper sleep depth.
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significantly impaired in participants withMCI on both PSG-
derived and subjective measures.25 The lower alpha peak
frequency was also related to the early phase of AD at resting
wake state.26,27 In our cohort, the reduced alpha band power
for predicting dementia could be related to the lowering of
the alpha peak frequency, which can enter the theta band
range. However, inconsistent results are found where, in a
study of 85 elderly women who were newly diagnosed with
MCI or dementia 5 years after the baseline sleep recording,
increased alpha and theta band powers during NREM and
increased alpha and sigma band powers during REM were
observed in their baseline sleep recordings.28 Other sleep
measures such as actigraphy have also shown evidence of
sleep-wake fragmentation in people at early stages of AD.29

Sleep is tightly related to normal functioning of the cardio-
vascular system. Protocols such as partial or total sleep
deprivation and extended sleep restriction have been widely
used to simulate sleep disturbances in daily life and to study

their cardiovascular outcomes. Lack of sleep leads to de-
terioration of vascular structure and function, including increased
arterial stiffness, impaired coronary microcirculation, and endo-
thelial dysfunction.30,31 Lack of sleep also increases heart rate and
sympathetic activity and decreases parasympathetic activity.31-33

Besides sleep duration, other more refined measures, such as
sleep efficiency,34 sleep fragmentation,35 and circadian frag-
mentation36 or shift,37 have been found to predict incident
cardiovascular outcomes. On the other hand, data-driven ap-
proaches that combine multimodal sleep features have also been
developed to predict hypertension38 or composite cardiovascular
outcomes,39 where the prediction is better than that of AHI,
consistent with our comparison with AHI in Table 2.

Among cardiovascular outcomes, atrial fibrillation was the
only one with an insignificant poor-to-average 10-year risk
ratio when using sleep EEG (Table 2). Perhaps this should
not be surprising because the association of sleep EEG with

Table 2 Ten-Year Risk Ratios Predicted by Sleep EEG or AHI Stratified by Sex

Outcome

Poor vs Average sleep Average vs Good sleep

Sleep EEG AHI Sleep EEG AHI

Female Intracranial hemorrhage 7.8 (4.8–21.3)a 1.3 (0.0–5.4) 5.2 (1.2–16.2)a 1.2 (0.4–2.6)

Ischemic stroke 3.4 (2.9–6.7)a 0.9 (0.4–2.0) 10.3 (2.8–45.5)a 1.6 (1.0–2.6)

Dementia 6.2 (4.6–9.6)a 1.5 (0.8–2.7) 2.4 (1.8–8.6)a 1.1 (0.7–1.6)

MCI or Dementia 4.1 (3.2–5.0)a 0.9 (0.6–1.4) 2.8 (2.1–5.0)a 1.2 (0.9–1.5)

Atrial fibrillation 1.6 (1.0–2.5) 1.3 (0.8–1.9) 1.9 (1.2–3.3)a 1.6 (1.2–2.0)a

Myocardial infarction 3.7 (2.8–5.8)a 1.5 (0.9–2.4) 2.0 (1.6–4.7)a 1.6 (1.1–2.2)a

Type 2 diabetes 2.6 (2.3–3.5)a 2.0 (1.4–2.9)a 3.0 (1.9–4.6)a 1.4 (1.1–1.9)a

Hypertension 1.8 (1.7–2.2)a 1.2 (0.9–1.5) 2.0 (1.7–2.9)a 1.5 (1.3–1.8)a

Bipolar disorder 3.3 (1.8–4.0)a 1.6 (0.4–4.2) 2.2 (1.2–4.9)a 0.7 (0.3–1.2)

Depression 1.7 (1.6–1.9)a 1.0 (0.8–1.3) 1.4 (1.3–1.8)a 1.1 (0.9–1.2)

Death 5.6 (4.9–7.5)a 1.3 (0.9–1.8) 4.9 (2.7–9.3)a 1.3 (1.0–1.7)

Male Intracranial hemorrhage 7.9 (4.8–21.0)a 1.3 (0.0–5.2) 5.2 (1.1–16.1)a 1.2 (0.4–2.6)

Ischemic stroke 3.4 (2.9–6.6)a 0.9 (0.4–1.9) 9.9 (2.7–45.5)a 1.6 (1.0–2.6)

Dementia 6.1 (4.6–9.6)a 1.5 (0.8–2.6) 2.5 (1.7–8.7)a 1.1 (0.7–1.6)

MCI or Dementia 4.0 (3.1–4.9)a 0.9 (0.6–1.3) 2.8 (2.1–5.0)a 1.2 (0.9–1.5)

Atrial fibrillation 1.6 (1.0–2.4) 1.2 (0.8–1.9) 1.9 (1.2–3.3)a 1.6 (1.2–2.0)a

Myocardial infarction 3.6 (2.7–5.7)a 1.5 (0.9–2.4) 2.0 (1.6–4.6)a 1.6 (1.1–2.1)a

Type 2 diabetes 2.6 (2.3–3.5)a 2.1 (1.4–2.9)a 3.0 (1.9–4.6)a 1.4 (1.1–1.9)a

Hypertension 1.8 (1.7–2.2)a 1.2 (0.9–1.5) 2.0 (1.7–2.9)a 1.5 (1.3–1.8)a

Bipolar disorder 3.2 (1.8–4.0)a 1.6 (0.4–4.3) 2.2 (1.2–4.9)a 0.7 (0.3–1.2)

Depression 1.8 (1.6–2.1)a 1.0 (0.8–1.3) 1.4 (1.3–1.9)a 1.1 (0.9–1.3)

Death 5.5 (4.8–7.4)a 1.3 (0.9–1.8) 4.9 (2.7–9.3)a 1.3 (1.0–1.7)

a p < 0.05.
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cardiovascular outcomes is less clearly described in the lit-
erature, as compared with those of AHI or hypoxia. The asso-
ciations between AHI and cardiovascular outcomes are expected
because sleep apnea results in fluctuations in autonomic function
and intermittent hypoxia has pleotropic undesirable cardiac and
vascular effects.40 During sleep, parasympathetic modulation is
dominant. However, sleep apnea disturbs this quiescence and
leads to nocturnal arrhythmias, loss of blood pressure dipping,
and blood pressure surges associated with arousals.41 CPAP
treatment that reduces AHI has been shown to reduce nocturnal
arrhythmias including atrial fibrillation.42

There have been many scores developed to measure future
cardiovascular risk. For example, the FRS19 uses age, sex,
smoker, total cholesterol, high-density lipoprotein choles-
terol, systolic BP, and BP being treated with medicines. The
result that sleep-predicted score correlates with the FRS
shows the construct validity of our approach.

Various aspects of sleep have been shown to be associated with
mortality. For example, a large cohort study in 322,721 partic-
ipants revealed that 7 hours of sleep is associated with a lower
rate of all-cause, cardiovascular disease, and other-cause mor-
tality,43 supported by other reviews.44 Sleep efficiency and the
percentage of sleep time with oxygen saturation lower than
90% also predict mortality.45 Among all sleep stages, reduction
in REM sleep has been found to be associated with increased
all-cause, cardiovascular, and other non–cancer-related mor-
tality in 2 independent cohorts.46

Our study has limitations in terms of noise and biases. De-
termination of outcomes may have included noise because
ICD codes may only reflect an encounter problem that may
not necessarily be the true pathology. Determination of
medications is also affected by different time frames from
heterogeneous sources, i.e., medication of MGH participants
are from a questionnaire or within 1 month before PSG from
the electronic medical record and medications of SHHS
participants are from 2weeks before PSG. Another important
source of noise is the night-to-night variability of sleep. This
can be overcome by averaging the derived risk acrossmultiple
nights to reduce its variance47 as the wearable sleep devices
are becoming more feasible. Translating our results to
individual-level decision-making aids will need a lot more
work but may first be considered on some larger scale only.
Our cohort is also biased because it is from a clinical sleep
laboratory; hence, it is possible that the sleep captured in the
laboratory is not typical compared with sleep at home.
Therefore, our results may only generalize to the sleep clinic
population with suspected sleep disorders in the United
States. Outcomes are almost certainly affected by the levels
of available and affordable health services, and thus, these
results may not generalize to other parts of the United States,
underserved areas or populations, and other countries. An-
other source of bias is unmeasured confounding bias where
variation in genes can contribute to both the changes in sleep
EEG and incidence of unfavorable outcomes, creating

spurious noncausal association. Furthermore, it is unclear how
to best modify possible mediator sleep metrics, either at the
population level or individually. Possible ways to improve sleep
include cognitive behavioral therapy, optimizing circadian
alignment, CPAP, oxygen supplementation for sleep hypoxia,
sedatives which improve desirable sleep features, and potentially
noninvasive brain stimulation. Therefore, it is plausible that some
of these improvements will improve brain health.

The sleep EEG containspredictive andgeneralizable information
about key adverse health outcomes. Sleep EEG provides an ac-
cessible biological window into brain and body health. Our study
provides a theoretical basis for future changes in clinical care
informed by sleep EEG-predicted risks of unfavorable outcomes.
Further work is needed to validate clinical usefulness based on
treatment effects on the predicted risks of outcomes.
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