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Abstract 

Study Objectives:  To use relatively noisy routinely collected clinical data (brain magnetic resonance imaging (MRI) data, clinical 
polysomnography (PSG) recordings, and neuropsychological testing), to investigate hypothesis-driven and data-driven relationships 
between brain physiology, structure, and cognition.

Methods:  We analyzed data from patients with clinical PSG, brain MRI, and neuropsychological evaluations. SynthSeg, a neural 
 network-based tool, provided high-quality segmentations despite noise. A priori hypotheses explored associations between brain 
function (measured by PSG) and brain structure (measured by MRI). Associations with cognitive scores and dementia status were 
studied. An exploratory data-driven approach investigated age-structure-physiology-cognition links.

Results:  Six hundred and twenty-three patients with sleep PSG and brain MRI data were included in this study; 160 with cognitive 
evaluations. Three hundred and forty-two participants (55%) were female, and age interquartile range was 52 to 69 years. Thirty-six 
individuals were diagnosed with dementia, 71 with mild cognitive impairment, and 326 with major depression. One hundred and 
fifteen individuals were evaluated for insomnia and 138 participants had an apnea–hypopnea index equal to or greater than 15. Total 
PSG delta power correlated positively with frontal lobe/thalamic volumes, and sleep spindle density with thalamic volume. rapid eye 
movement (REM) duration and amygdala volume were positively associated with cognition. Patients with dementia showed signif-
icant differences in five brain structure volumes. REM duration, spindle, and slow-oscillation features had strong associations with 
cognition and brain structure volumes. PSG and MRI features in combination predicted chronological age (R2 = 0.67) and cognition (R2 
= 0.40).

Conclusions:  Routine clinical data holds extended value in understanding and even clinically using brain-sleep-cognition 
relationships.
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Graphical Abstract 

Statement of Significance

Our study has validated previous hypotheses about sleep-brain structure associations using routine clinical data and introduced 
the concept that data-driven selection of EEG and magnetic resonance imaging (MRI) features could significantly enhance pre-
dictions of cognitive status and age. This highlights the potential role of multivariable analytics in clinical practice, providing a 
pathway to expand the utilization of clinical EEG and structural MRI data in future studies and clinical applications. Our findings 
underscore the importance of an integrated, holistic view of the relationship between sleep, brain structure, and cognition, offer-
ing the potential for a more comprehensive understanding of neurological and psychological disorders and potentially improving 
patient care. Furthermore, the ability to extract valuable information from routine clinical data, such as polysomnography and 
MRI, suggests the possibility of identifying brain health risks, disease progression, and the evaluation of therapeutic interventions 
in a clinical setting. This study represents a step towards harnessing the full potential of clinical data to benefit patients and 
advance our understanding of the complex interplay between sleep, brain health, and cognition.

Introduction
rapid eye movement (REM) sleep [1–5] and non-REM sleep [6–9] 
have distinct oscillations within distinct frequency ranges. Some 
of the brain origins of these oscillations are known and relatively 
localized, such as the reticular thalamic-thalamocortical relay for 
sleep spindles [10], while slow waves have more distributed gen-
erators from anterior and medial cortical areas [11–13]. The fast 
oscillations typical of REM sleep originate from brain-activating 
sites but project diffusely. It is thus to be expected that disease 
states that impact brain networks should alter these sleep oscil-
lations, and it may be possible to read out sleep-brain oscillations 
to detect disease at various stages of evolution [14–18].

There are systematic changes in sleep macro [19–26] and micro 
[8, 27] architecture associated with the aging process regardless of 
the presence of disorders such as sleep apnea and periodic limb 
movement disorder. There is a reduction in slow waves and thus 
deep sleep (non-REM stage 3), sleep spindles and K-complexes, 
total sleep time (TST) and sleep efficiency [28], a mild reduction in 
REM sleep, and an increase in arousals and light sleep (non-REM 
stage 1) [29]. With increasing age, sleep becomes briefer, more 
fragmented, and has less REM and deep non-REM sleep [30, 31]. 

Older brains exhibit decreased alpha oscillations while awake; 
and in sleep, less slow wave activity [32–34], spindle amplitude, 
and density [27], and slow wave/spindle coupling [8].

All of these changes are amplified by Alzheimer’s disease (AD) 
and related dementias, as well as non-AD neurodegenerative dis-
ease [35, 36]. In addition, specific cognitive deficits are associated 
with pathology of specific sleep oscillations generated by specific 
brain structures, e.g. reduced sleep spindles and hippocampal 
atrophy [8, 37, 38], and age-related memory impairment [39, 40]. 
Considering the evidence from numerous studies highlighting the 
crucial role of sleep in supporting cognitive processes [41–45]. it 
is increasingly apparent that there may be a connection between 
changes in sleep patterns and the accelerated cognitive decline 
and impairment observed in older adults [46–50]. Indeed, as the 
brain networks generating sleep oscillations are the same net-
works engaged in cognitive processes, analysis of sleep may also 
allow prediction of impaired cognition [51–53].

Questions regarding the specific brain structural abnormalities 
that might influence sleep patterns and quality [54–56], the extent 
to which good sleep quality can compensate for neuropathology 
[57], and the compensatory role of healthy brain structure in the 
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presence of sleep pathology [58] are actively being investigated. 
Notably, certain studies suggest that individuals with resilient 
brain structures may exhibit better sleep quality even in the pres-
ence of sleep disorders or disruption [59]. Emerging work also 
suggests that the sleep state encodes information about brain 
health [60, 61]. not evident in standard stages and similar metrics.

Structural magnetic resonance imaging (MRI) of the brain is 
a frequent clinical examination for diverse reasons. Typically, 
once the clinical question is answered (e.g. —is there a brain 
tumor?), the rest of the data are effectively discarded (euphe-
mistically, “archived”). Extracting regional brain volumes is gen-
erally considered difficult, and the focus of clinical imaging is 
on detecting discrete pathology [62]. Similarly, clinical PSG usu-
ally reports the apnea–hypopnea index and sleep stages, dis-
carding the majority of the information content of hours-long 
recordings. Can MRI and PSG data be put to better use? Most 
clinical PSG is actually research standard/quality data, based 
on standards of the American Academy of Sleep Medicine; and 
extracting sleep power bands and spindle kinetics, as examples, 
is readily achieved even if not done in clinical care. This is not 
true for MRI, with a wide variety of scan parameters including 
resolution. SynthSeg is a recently developed convolutional neu-
ral network-based segmentation tool that is compatible with 
clinical-grade brain MRI scans of widely varying contrast and 
resolution without retraining or fine-tuning. SynthSeg* includes 
an option to increase the robustness of the segmentation pro-
cess and to facilitate the synthesis of higher-resolution images 
derived from lower-resolution scans, even when there are var-
iations in orientation, resolution, and MRI contrast [63, 64]. 
SynthSeg* can be used across a wide array of participant pop-
ulations from young and healthy to aging and diseased partici-
pants, with or without preprocessing (bias field corruption, skull 
stripping, intensity normalization, and registration to template). 
Importantly, the output segmentations are returned at high 
resolution (1 mm isotropic) regardless of the resolution of the 
input scans. This presents an opportunity to align MRI and PSG 
as never before to probe brain structure-function relationships 
in health and disease.

Herein we first tested the hypotheses that (1) sleep spindles/
sigma power are associated with thalamic volumes, and spin-
dle abnormalities are associated with memory deficits and hip-
pocampal atrophy [8, 37, 38], (2) sleep slow wave/delta power is 
associated with cortical volumes, and a reduction is associated 
with impaired cognition [65–67], (3) specific sleep macro and 
microstructure are associated with specific brain volumes and 
cognition [68–70], and (4) the combination of sleep electroen-
cephalogram (EEG) from PSG and brain MRI data are better pre-
dictors of cognition than either assessment alone [71–73]. We 
then employed a data-driven discovery approach to investigate 
how much of the variation in measures of sleep, brain structure, 
cognition, and presence of dementia are explained by regression 
models based on hypothesis-based relationships alone compared 
with data-driven models. In the process, we identified poten-
tial novel structure-function-behavior associations, and gained 
insights into how much information each modality provides 
about the others. Importantly, our input data used clinical MRIs 
across a heterogeneous group of patients who also underwent 
clinically indicated polysomnograms and basic cognitive testing 
with the Mini-Mental State Examination (MMSE) and/or Montreal 
Cognitive Assessment (MoCA). We used machine learning 
approaches to probe sleep-related brain oscillations and assessed 
three-way associations and predictions with brain structure and 
cognition.

Methods
The study procedures were approved by the Mass General 
Brigham Institutional Review Board. Due to the deidentification of 
the data used in this retrospective data analysis, the requirement 
for  individual-level informed consent was waived. This study 
adheres to the Strengthening the Reporting of Observational 
Studies in Epidemiology (STROBE) reporting guidelines, ensuring 
comprehensive and transparent reporting of the study method-
ology and results.

Study cohort
This cross-sectional analysis used a convenience dataset com-
prised of patients who underwent both clinical PSG and clinical 
brain MRI at the Massachusetts General Hospital, with the two 
studies per patient acquired within a 5-year interval, all studies 
completed between 2008 and 2020. Participants were required 
to meet the following inclusion criteria: (1) age between 18 and 
80 years, and (2) underwent full night diagnostic PSG (not a split 
night study). Age in this study was determined as age at the time 
of the sleep polysomnography.

MRI data
MRI data closest to the date of the PSG that included a whole 
brain volume of T1, T2, fluid-attenuated inversion recovery 
(FLAIR), or diffusion sequence was selected for analysis if there 
were multiple scans for a patient. SynthSeg* [63, 64] based on 
FreeSurfer (Version v7.3.2) [74], neuroimaging software were 
used, together with custom processing scripts and tools for facil-
itating quality control review. SynthSeg, a recent convolutional 
neural network-based tool, is designed for segmenting brain 
regions in clinical-grade MRI scans, accommodating varying con-
trasts and resolutions. This tool enhances segmentation robust-
ness and can generate high-resolution images (1 mm isotropic) 
from lower-resolution scans, even amidst variations in orienta-
tion and MRI contrast. It was designed to be versatile, suitable 
for a broad spectrum of participants, from young and healthy to 
aging and diseased. Notably, the output remains at a high resolu-
tion, irrespective of the input scan’s resolution. We used SynthSeg 
to automatically segment various brain regions from clinical MRI 
sequences, resulting in 94 regional cortical and subcortical vol-
ume measures for each hemisphere. The raw MRI images and 
the SynthSeg processing outputs were reviewed manually by two 
physician- scientists (RG, PH) with expertise in neuroanatomy to 
ensure that all derived measures came from whole brain images 
(no partial volumes) and to exclude cases with strokes, neoplasms, 
traumatic injury, and other structural lesions that corrupted the 
automated volumetric data. In datasets with multiple acquisi-
tion sequences passing this quality control, the order of preferred 
selection was T1, T2, FLAIR, then Diffusion-Weighted, to achieve 
the most accurate assessment [63, 64]. We summed left and right 
hemisphere volumes, and to account for inter- participant ana-
tomical differences, all MRI regional volume measures were nor-
malized by the individual’s total intracranial volume (ICV) [75, 76] 
using the division method, i.e. calculating the ratio between the 
volumes of interest and the total ICV, generating a unitless value 
ranging from 0 to 1.

Sleep EEG data
EEG signals were recorded at a minimum sampling rate of 200 
Hz and segmented into non-overlapping 30-second epochs. These 
epochs were manually scored by certified sleep technicians fol-
lowing the standards set by the American Academy of Sleep 

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/47/2/zsad294/7394969 by guest on 09 February 2024



4 | SLEEP, 2024, Vol. 47, No. 2

Medicine [77] as part of routine clinical care. The EEG signals con-
sisted of six channels: frontal (F3-M2 and F4-M1), central (C3-M2 
and C4-M1), and occipital (O1-M2 and O2-M1), each reference to 
the contralateral mastoid. The scored epochs were categorized 
into one of the five sleep stages: wake (W), REM, non-REM stage 
1 (N1), Non-REM stage 2 (N2), and Non-REM stage 3 (N3). These 
clinical studies were reported after epoch-by-epoch review by 
Board Certified Sleep Medicine specialists, thus providing a layer 
of quality control.

To minimize non-physiological artifacts, the EEG signals were 
notch-filtered at 60 Hz to reduce line noise and bandpass filtered 
from 0.3 Hz to 50 Hz. For the 30-second epochs, those with an 
absolute amplitude larger than 500 uV were removed from anal-
ysis to mitigate movement artifacts. Additionally, epochs con-
taining flat EEG for more than 2 seconds were excluded. From 
the hypnograms, 20 macro-structure architecture features were 
derived, including total resting time, TST, durations of each sleep 
stage, percentage of time spent in each sleep stage, sleep effi-
ciency index (calculated as TST divided by total resting time), 
sleep onset latency (time to the first sleep stage), time to first 
awake period after sleep onset (WASO), REM latency, number of 
stage shifts to Wake from NREM/REM sleep (NA), number of stage 
shifts to N1 from NREM/REM sleep (NSS), and sleep fragmenta-
tion index ([78], calculated as [NA + NSS] divided by TST).

For each 30-second epoch and EEG channel, EEG microstructure 
data were extracted using similar features as those used in previ-
ous work for sleep staging [79]. In total, 1054 microstructure fea-
tures were extracted from the full night of recording. Specifically, 
we extracted features from 2-second windows with step sizes of 
one second for each 30-second epoch, covering both time and 
frequency domains. In the time domain, we considered features 
such as line length, kurtosis, and sample entropy. In the frequency 
domain, we analyzed features such as the 95th percentile, min-
imum, mean, and standard deviation of relative delta/theta/
alpha band power. Additionally, we examined the 95th percentile, 
 minimum, mean, and standard deviation of the delta–theta/delta–
alpha/theta–alpha power ratio, as well as the kurtosis of the delta/
theta/alpha/sigma band spectrogram. For each EEG recording, we 
calculated the average of these features within each of the five 
sleep stages over time, resulting in 1054 features per EEG. To bet-
ter characterize NREM sleep homeostasis, we quantified the total 
delta power (<4Hz) during N2 and N3 sleep stages for the entire 
sleep duration, the initial 4 hours, and up to the first REM epi-
sode. We further applied linear regression to the epoch-wise < 4Hz 
power data in N2 and N3, extracting both intercept and slope. 
For REM characterization, we calculated the total power in delta, 
theta, and alpha frequency bands for the first REM episode and all 
subsequent REM episodes. Additionally, we computed a total of 93 
spindle and slow-oscillation (SO) features with Luna software [80]. 
Spindle features were extracted in N2 sleep with central frequen-
cies of 11.5 Hz (referred to as “slow spindles”) and 15.5 Hz (referred 
to as “fast spindles”) from the frontal, central and occipital chan-
nels. SO and SO-spindle coupling features were extracted in N2 
and N3 stages. To streamline the analysis, we performed feature 
reduction by eliminating highly correlated features. Features with 
a Pearson correlation coefficient greater than 0.95 were deemed 
highly correlated and thus were eliminated from the analysis. This 
step reduced the total number of features from 1167 to 776. To 
ensure approximate Gaussian distributions, we applied a logarith-
mic transformation to the features. Subsequently, we standardized 
the features using  z-transformation, which involved adjusting 
them to have a mean of zero and a standard deviation of one in 
the training set. The same z-transformation was also applied to 

the testing set. Furthermore, we employed a data-driven approach 
and predefined restrictions to group the sleep EEG features. The 
sleep feature supergroups were categorized as wake and N1 stages 
combined (“W+N1”), N2 and N3 stages combined (“N2+N3”), REM 
sleep (“REM”), and macro features (“Macro”). Subsequently, fea-
tures within these supergroups were clustered into subgroups or 
“clusters” based on their correlation matrices. Ward’s algorithm 
[81] was employed for clustering, using Euclidean distance as the 
distance metric. Upon manual inspection, we selected a maximum 
distance of 12 within clusters. Cluster metrics are reported in the 
supplement.

Cognitive and health data
In prior work from our group [82], we developed a method to 
extract cognition-related information from electronic medical 
records. Scores for the MMSE and MoCA, and diagnoses for mild 
cognitive impairment (MCI) and dementia, when available, were 
extracted from clinical notes using regular expressions. These 
examinations were conducted as part of clinical care, primarily 
within neuropsychiatric evaluations, to assess cognitive prob-
lems. For the present study, we manually reviewed clinical notes 
to confirm or correct MMSE and MoCA scores, as well as MCI and 
dementia diagnoses. To achieve compatibility across scores, we 
converted MoCA scores to equivalent MMSE scores using an equi-
percentile equating method as previously described [83].

We further extracted ICD-10 codes at the time of the sleep 
studies, and computed the overall Charlson comorbidity index 
and, based on Elixhauser Comorbidity methodology, categorized 
participants into additional, non-exclusive disease categories: 
myocardial infarction, congestive heart failure, peripheral vas-
cular disease, cerebrovascular disease, chronic pulmonary dis-
ease, rheumatoid disease, peptic ulcer disease, mild liver disease, 
diabetes without complications, diabetes with complications, 
hemiplegia or paraplegia, renal disease, cancer (any malignancy), 
moderate or severe liver disease, metastatic solid tumor, AIDS/
HIV, alcohol abuse, drug abuse, psychoses, and depression. We 
report the prevalence of these comorbidities as part of the base-
line demographic information (see Table 1). Furthermore, the 
most prevalent diseases in our cohort (dementia, MCI, depres-
sion, cancer, diabetes, congestive heart failure, peripheral vascu-
lar disease, and cerebrovascular disease) were used for sensitivity 
analyses (detailed below). Here, dementia and MCI were treated 
as mutually exclusive from other disease groups. Participants 
without dementia or MCI could belong to multiple disease groups. 
This approach was taken to ensure that the influences of neuro-
degenerative dementia diseases on brain structure and function 
did not overly confound results for other disease groups.

Statistical analyses
All statistical tests used in this study were two-sided unless noted 
otherwise. We employed Python (3.11.3) and R (4.3.1) statistical 
software for the analysis. Only data within a time interval of 5 
years between PSG, MRI, and cognitive scores were included for 
analysis. To ensure the reliability of the data, patients with cog-
nitive decline due to stroke, Parkinson’s disease, mental illness, 
vascular dementia, Lewy body dementia, brain tumor, and para-
neoplastic syndrome were identified and excluded. This was done 
by manually reviewing MRI images and clinical notes. Additionally, 
to minimize the risk of spurious associations between MRI, PSG, 
and cognitive scores, all patients’ clinical reasons for visits and 
corresponding visit dates were carefully examined in the PSG 
reports, MRI reports, and cognitive reports. In cases where a 
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Table 1. Demographic and Baseline Clinical Information

N participants with PSG and MRI 632 160

Age: year, median (IQR) 61 (52, 69) 67 (58, 73)

Age: number (%)

<20 0 (0) 0 (0)

20–40 34 (6) 2 (1)

40–60 248 (40) 45 (28)

60–80 306 (49) 97 (61)

>80 34 (6) 16 (10)

Sex: number (%)

Female 342 (55) 74 (46)

Male 281 (45) 86 (54)

Race

White 522 (84) 141 (88)

Black 43 (7) 6 (4)

Asian 8 (1) 1 (1)

American/Alaska 3 (0) 0 (0)

Other 31 (5) 8 (5)

Unavailable 15 (2) 5 (3)

Ethnicity

Hispanic 39 (6) 7 (4)

Non Hispanic 550 (88) 148 (4)

Unavailable 34 (5) 5 (3)

N diagnostic PSG studies 632 (100) 160 (100)

Apnea–hypopnea index
(3% desaturations)

Normal (AHI < 5) 241 (39) 65 (41)

Mild (5 ≤ AHI < 15) 244 (39) 60 (38)

Moderate (15 ≤ AHI < 30) 97 (16) 23 (14)

Severe (30 ≤ AHI) 41 (7) 12 (8)

Respiratory disturbance index
(RDI, events/hour) (IQR)

13 (7, 24) 12 (6, 24)

Limb movement index (events/hour) (IQR) 13 (4, 38) 17 (4, 48)

Sleep fragmentation index (IQR) 4 (3, 6) 4 (3, 6)

Epworth Sleepiness Scale (IQR) 7 (4, 11) 6 (4, 10)

Visit for insomnia evaluation: number (%) 115 (33) 27 (29)

Charlson comorbidity index (IQR) 2 (1, 3) 2 (1, 3)

Minimal (CCI < 2) 256 (41) 61 (40)

Mild (CCI == 2) 131 (21) 32 (21)

Moderate (3 ≤ CCI < 5) 149 (24) 42 (27)

Severe (5 ≤ CCI) 88 (14) 21 (14)

Diagnoses (ICD-10) N = 583

Myocardial infarction 31 (5) 6 (4)

Congestive heart failure 96 (17) 22 (14)

Peripheral vascular disease 111 (19) 32 (21)

Cerebrovascular disease 171 (29) 50 (32)

Chronic pulmonary disease 217 (37) 43 (28)

Rheumatoid disease 38 (7) 7 (5)

Peptic ulcer disease 15 (3) 1 (1)

Mild liver disease 73 (13) 21 (14)
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patient had multiple MRIs, PSGs, and cognitive scores, the data 
point closest to the median of the total time interval between 
them was selected.

Part one: testing hypothesized relationships.
In the first part of this study, we tested a set of hypothesized 
relationships based on domain knowledge and prior literature 
between sleep EEG measurements (PSG), brain structural MRI, 
and neuropsychological MMSE scores (NP). The hypotheses were:

1. Slow oscillatory (<1 Hz) and delta (1–4 Hz) power in NREM 
sleep are positively associated with the volumes of the 
thalamus and the anterior cortex (sum of anterior cingu-
late cortex and medial orbitofrontal cortex), constituted by 
the medial orbitofrontal and the anterior cingulate cortex.

2. Slow and fast sleep spindle densities in N2 sleep posi-
tively correlate with the volumes of the thalamus and 
hippocampus.

3. The proportion of REM sleep is positively associated with 
the volumes of isthmus cingulate cortex, the amygdala, 
and the brainstem.

4. Alpha (8–12 Hz) power during wake correlates positively 
with the volumes of the thalamus and negatively with total 
brain ventricular volume.

Each variable was also tested for associations with cognitive per-
formance. Pearson correlation and partial Pearson correlation, 
adjusted for age and sex, were used to test these associations. For 
every pair, we established a null hypothesis stating that no asso-
ciation exists between variables X and Y when controlling for age 
and sex. This hypothesis was rejected if the p-value was below 
0.05. To test the robustness of these associations, we stratified 
the patients based on their chronological age, the time intervals 
between the EEG, MRI, and neuropsychological measures, as well 

as disease categories. We then repeated the analysis for each of 
these subgroups.

We further analyzed if the variables within the a priori hypoth-
eses differed among patients with MCI, dementia, and controls. 
Our non-dementia control group comprised patients who were 
not diagnosed with MCI or dementia and exhibited a Charlson 
comorbidity index of either zero or one. Considering the young-
est patient in the MCI + dementia group was 42 years old, we 
limited the control group to individuals older than 42. We fitted 
individual linear regression models for each feature, where the 
features served as the dependent variables and age acted as the 
independent variable. Based on visual inspection of the data, we 
selected the regression models to be either first-order (linear) or 
second-order (quadratic). Models were established separately for 
controls, patients with MCI, patients with dementia, and patients 
with combined MCI and dementia. For age groupings divided into 
5-year intervals, we calculated the 95% confidence interval of 
the estimated mean using bootstrapping. We determined statis-
tical significance by examining whether or not these confidence 
intervals overlapped. We further performed principal component 
analysis incorporating all sleep and MRI features and conducted 
an analogous modeling process for principal components 1–4.

Part two: exploratory analyses.
The subsequent part of our study involved exploratory analy-
ses. These investigations sought to understand associations and 
predictive powers beyond the a priori hypothesized relationships 
between sleep, brain structure volume, and cognition. We began 
by determining associations via Pearson correlations between 
any pair of sleep-MRI, sleep-cognition, and MRI-cognition fea-
tures, while controlling for multiple comparisons (see below).

Discovery of associations through block-permutation strat-
egy: given the substantial correlations within the variables of 
a domain (sleep, structure), employing a Bonferroni correction 

N participants with PSG and MRI 632 160

Diabetes without complications 150 (26) 31 (20)

Diabetes with complications 95 (16) 21 (14)

Hemiplegia or paraplegia 7 (1) 1 (1)

Renal disease 99 (17) 28 (18)

Cancer (any malignancy) 158 (27) 47 (30)

Moderate or severe liver disease 1 (0) 0 (0)

Metastatic solid tumor 18 (3) 3 (2)

AIDS/HIV 3 (1) 2 (1)

Alcohol abuse 37 (6) 18 (12)

Drug abuse 51 (9) 17 (11)

Psychoses 24 (4) 11 (7)

Depression 326 (56) 102 (65)

Diagnoses (chart review)

Mild cognitive impairment 71 (11) 55 (34)

Dementia 36 (6) 23 (14)

Time between measurements (years)

EEG—MRI 2.2 (1.9) 1.7 (1.6)

EEG—Neuropsych. — 2.1 (2.1)

MRI—Neuropsych. — 1.9 (2.1)

Table 1. Continued
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would be excessively conservative. Therefore, to tackle the issue 
of multiple testing and to structure the interpretation of numer-
ous interrelated tests, we employed a block-permutation strategy 
to derive empirical significance values while maintaining control 
for multiple testing [45] Our process involved using Omnibus per-
mutation testing to ascertain if a feature set (for example, a sleep 
cluster) correlates with an independent variable (such as a spe-
cific brain structure volume, or cognition).

Predictive modeling: we also evaluated the variance explained 
for cognition and age by sleep and MRI data. Additionally, we 
explored the prediction of sleep features using MRI and vice 
versa. To mitigate the impact of a small sample size and to pre-
vent overfitting, we employed leave-one-participant-out cross- 
validation (LOOCV) [84]. In LOOCV, the model is trained on all 
but one observation, which is used as the test set. This process is 
repeated for each observation, and the overall prediction perfor-
mance is determined based on the test set scores only. For feature 
selection, we utilized the Least Absolute Shrinkage and Selection 
Operator penalized regularization [85], which helps identify 
important features and leads to simpler models. We performed 
hyperparameter tuning on the training set to find the optimal val-
ues that yielded the best performance. Least Absolute Shrinkage 
and Selection Operator conducts variable selection by shrinking 
the coefficients of certain variables to zero, resulting in a more 
interpretable and concise model. To ensure generalization of our 
models, we employed a strategy of hyperparameter tuning, which 
involved conducting a (10-1)-fold cross-validation within each 
iteration of the k-fold CV for classification algorithm evaluation 
(i.e. nested CV). This approach allowed us to fine-tune the model’s 
parameters based on a more stable and accurate prediction per-
formance. The (k-1) folds used in this inner cross-validation were 
the same as the original k-1 folds assigned for training. We eval-
uated the accuracy of our predictions using the Pearson’s coef-
ficient of determination (R2) and root mean square error (RMSE) 
between the measured and predicted values in all testing sets. To 
ensure consistency, all data were rescaled to z-scores with a mean 
of 0 and a standard deviation of 1. We were further interested in 

assessing the difference in prediction performance if we used a 
priori variables only vs. all available variables as model inputs. For 
this purpose, we set up multiple prediction tasks: predict MMSE 
or age from all EEG and MRI variables versus predict MMSE or age 
from a priori EEG and MRI variables; predict specific brain struc-
ture volumes from all EEG variables versus predict specific brain 
structure volumes from a priori EEG variables only, and analo-
gously for MRI variables. The a priori features of EEG included 
total slow and delta (0.4–4Hz), SO rate, slow sleep spindle density, 
fast sleep spindle density, percentage REM, and occipital alpha 
power during Wake. MRI features evaluated included volumes of 
the thalamus, hippocampus, isthmus cingulate, amygdala, brain 
stem, and total ventricles. To determine statistical significance, 
we evaluated if the [0, 95] and [5, 100] confidence intervals for 
a priori-only and full feature, respectively, overlapped. The con-
fidence intervals were computed by bootstrapping (N = 10 000 
iterations). In all of the prediction tasks, we controlled for time 
between EEG, MRI, and neuropsychological measures by adding 
the respective variables as input to the models.

Results
Detailed data of 8673 patients who underwent polysomnogra-
phy were extracted from the Sleep Laboratory of Massachusetts 
General Hospital. A total of 4157 MRI sessions from 632 overlap-
ping participants were obtained, along with 467 cognition scores 
from 160 participants. Among the 160 patients included in the 
analysis, 84 had MMSE scores, and 76 had MoCA scores. See 
Figure 1 for consolidated standard of reporting trial (CONSORT) 
flow diagram and Table 1 for demographic and baseline clinical 
information. For the 76 patients with MoCA scores, the scores 
were converted to MMSE equivalent scores using the MoCA to 
MMSE conversion table that is commonly used for Alzheimer’s 
disease clinical trial screening [83]. The final dataset thus con-
sisted of 632 patients who had both PSGs and MRI and of a 
subset of 160 participants who additionally had MMSE equiv-
alent scores for cognitive assessment. Histograms of the time 

Figure 1. CONSORT flow diagram.
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differences between different measurements are displayed in 
Supplementary Figure S1.

The collected sample in this study was clinically diverse: 
41% of participants had a Charlson Comorbidity Index score of 
less than two (minimal comorbidities), while 24% had a score 
of three or more (moderate or severe); the most common ICD-
10 diagnoses were depression (56%), chronic pulmonary dis-
ease (37%) cerebrovascular disease (29%), and cancer (27%); 
and 11% were diagnosed with MCI and 6% with dementia. 
It is important to note that a single patient could have been 
assigned multiple ICD-10 codes if they had more than one 
diagnosed condition.

Part one: testing hypothesized relationships.
The results data for the a priori hypotheses are presented in 
Table  2, which displays both the unadjusted and the age- and 
sex-adjusted Pearson correlation results. Total slow and delta 
power (0.5–4 Hz) was significantly associated with both the vol-
umes of anterior cortex (sum of anterior cingulate cortex and 
medial orbitofrontal cortex, r = 0.34, p < 0.001) and thalamus 

(r = 0.34, p < 0.001). Fast spindle density was associated with tha-
lamic volume (r = 0.11, p < 0.01).

With two exceptions, all NREM hypotheses were confirmed in 
the non-adjusted version, while only the association between fast 
spindle density and the thalamic volume showed significance 
after controlling for age and sex (r unadjusted 0.31, r adjusted 
0.11).

While percentage REM was not associated with the hypoth-
esized structural volumes, both percentage REM and the 
amygdala volumes were associated with cognition, as meas-
ured via MMSE scores, after controlling for the covariates (r 
adjusted = 0.16, p = 0.04; r adjusted = 0.20, p = 0.01, respectively). 
For the wake hypotheses, total ventricular volume was nega-
tively associated with MMSE score without covariate adjust-
ment (r unadjusted = −0.24, p < 0.001, r adjusted = −0.15, 
p = 0.07).

Sensitivity analysis of a priori hypotheses stratified by 
participants’ chronological age and time distances between 
EEG, MRI, and neuropsychological measures is reported in 
Supplementary Table S1, while stratification by disease cat-
egory is reported in Supplementary Table S2. Generally, the 

Table 2. A Priori Hypotheses Between Electroencephalogram Features (Wake and Sleep), Brain Structure Volumes and Cognitive 
Function, as Measured by the MMSE

Feature pair Pearson R P-value Partial pearson R P-value

NREM

Total slow and delta power, Anterior cortex 0.10 0.01 −0.04 0.28

Total slow and delta power, Thalamus 0.27 <0.001 −0.01 0.75

SO rate frontal, Anterior cortex 0.08 0.04 −0.01 0.72

SO rate frontal, Thalamus 0.20 <0.001 0.00 0.95

Slow spindles density frontal, Thalamus 0.19 <0.001 0.01 0.88

Slow spindles density frontal, Hippocampus 0.08 0.05 −0.02 0.67

Fast spindles density central, Thalamus 0.31 <0.001 0.11 0.01

Fast spindles density central, Hippocampus 0.17 <0.001 0.06 0.11

Total slow and delta power, MMSE −0.01 0.86 −0.09 0.26

SO rate frontal, MMSE −0.03 0.70 −0.09 0.27

Slow spindles density frontal, MMSE 0.17 0.03 0.10 0.20

Fast spindles density central, MMSE 0.20 0.01 0.10 0.20

Hippocampus, MMSE 0.20 0.01 0.12 0.15

Anterior cortex, MMSE 0.03 0.70 −0.04 0.60

Thalamus, MMSE 0.21 0.01 0.06 0.43

REM

Percentage R, Isthmuscingulate 0.01 0.74 0.01 0.89

Percentage R, Amygdala 0.02 0.55 −0.02 0.71

Percentage R, Brainstem 0.02 0.58 0.02 0.55

Percentage R, MMSE 0.17 0.03 0.16 0.04

Isthmuscingulate, MMSE 0.06 0.48 0.08 0.33

Amygdala, MMSE 0.29 0.00 0.20 0.01

Brainstem, MMSE 0.03 0.69 0.03 0.73

WAKE

Mean alpha during W, Thalamus 0.01 0.73 0.01 0.81

Mean alpha during W, Total ventricle volume −0.04 0.36 −0.04 0.32

Mean alpha during W, MMSE 0.08 0.30 0.08 0.30

Total ventricle volume, MMSE −0.24 <0.001 −0.15 0.07
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directions and sizes of effects were largely consistent across 
the strata. However, due to a decrease in sample size, several 
feature pairs that showed significance with all participants did 
not reach significance within the individual strata. Notably, 
the strongest effect sizes differed among various disease and 
health groups for the investigated variable pairs. For example, 
the association of total delta power and the thalamic volume 
was stronger for patients with dementia compared to patients 
without disease and a Charlson Comorbidity index of less than 
2 (r unadjusted = 0.34, p = 0.04; r unadjusted = 0.17, p = 0.10, 
respectively). Similar results were obtained for the fast spindle 
frequency and thalamic volume associations; and some rela-
tionships that were insignificant for all patients pooled showed 
significance in the hypothesized associations for specific 
groups, such as mean alpha during wake and MMSE scores for 
patients with dementia (r adjusted = 0.47, p = 0.03). This sug-
gests that different diseases might alter function- structure-
behavior relationships in distinct ways. The results of the 
analysis comparing variables from the a priori hypotheses 

among patients with MCI, dementia, and control participants 
are presented in Figure 2.

Part two: exploratory analyses.
We did a cluster analysis of the 776 selected features. These sleep 
features were then grouped into 24 distinct clusters. Among 
these clusters, nine were associated with N2 + N3 sleep stages, 
nine were associated with W + N1 sleep stages, five were related 
to REM sleep stages, and one cluster contained macro features. 
For the resulting cluster dendrograms, and a comprehensive list 
of sleep features included in each sleep cluster, please refer to 
Supplementary Material.

To obtain p-values for the global associations, we employed 
the omnibus permutation procedure and obtained the follow-
ing results: (1) p-values (all sleep features and brain structure 
volumes, cognition): best = 0.003, median = 0.0002. (2) p-values 
(all sleep features, cognition): best = 0.002, median = 0.001. (3) 
p-values (all brain structure volumes, cognition): best = 0.09, 
median = 0.001.

Figure 2. Differences of a priori hypotheses variables between dementia and controls.
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Out of the 24 sleep clusters, nine were significantly associated 
with cognition and 17 with age, see Figure 3. Ten sleep clusters 
were significantly associated with the volume of at least one 
brain structure. The two brain structures with largest number 
of significantly associated sleep clusters were the thalamus and 
striatum with both 16 associated sleep clusters, followed by ven-
tricles (14), white matter (12), anterior cortex (11), hippocampus 
(9), amygdala (9), and brainstem (5). Effect sizes were moderate. 
The sleep cluster with the largest absolute median correlation 
with cognition was “delta and theta/alpha power in REM sleep” 
(r = 0.23 [0.12, 0.34], p < 0.001), followed by “delta/fast power 
ratio in W+N1” (r = 0.21 [0.14, 0.26], p < 0.05) and “delta in W+N1” 
(r = 0.20 [0.03, 032], p < 0.01). The “N2+N3 alpha and sigma power, 

and spindle activity” sleep cluster was the cluster most strongly 
associated with age (r = 0.24 [0.01, 036], p < 0.001) and specific 
brain structure volumes (thalamus: r = 0.20 [0.03, 034], p < 0.001; 
striatum: r = 0.20 [0.02, 0.32], p < 0.001).

The number of significantly correlated sleep features (out of 
all 776) per variable were: cognition 70, age 250, thalamus 240, 
striatum 182, hippocampus 54, amygdala 71, white matter 135, 
inferior parietal lobe 50, rostral anterior cingulate cortex 91, 
brainstem 22, and ventricles 208. The 35 sleep features with high-
est significance across any variable, excluding age, are shown in 
Figure 4. The top five features (theta power kurtosis in N2, fast 
sleep spindle density, EEG kurtosis in N2, alpha power kurtosis in 
N2, slow sleep spindle—SO coupling) are all stage N2 dependent 

Figure 3. Results of all pairwise comparisons (Pearson correlation) between sleep feature clusters and cognition, age, and brain structure volumes.
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and show similar association trends, i.e. negative associations 
with age and ventricle volume, and positive associations with vol-
umes of thalamus, hippocampus, striatum, inferior parietal lobe, 
rostral anterior cingulate cortex and white matter. The duration 
of SOs, fast spindle symmetry, and theta–alpha power ratio dur-
ing wake effectively show the opposite effect directions.

In the predictive analyses, we used R-squared (R2) as our pri-
mary evaluation metric, where a larger value indicates that more 

of the variability is explained, and hence better model accuracy. 
Figure 5 shows the results for predicting cognition and age from 
MRI features, sleep features, and MRI and sleep EEG features 
combined. EEG predicted MMSE scores better than MRI (R2 = 0.23, 
RMSE = 2.68, and R2 = 0.16, RMSE = 2.79, respectively), while MRI 
predicted chronological age better than EEG (R2 = 0.57, RMSE = 2.53, 
and R2 = 0.48, RMSE = 2.66, respectively). In both tasks, combining 
EEG and MRI features leads to superior performance: R2 = 0.4, 

Figure 4. Individual sleep feature associations were selected based on minimum Bonferroni-corrected p-value with cognition and the brain structure 
volumes.
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RMSE = 2.36 for predicting MMSE, and R2 = 0.67, RMSE = 2.39 for 
predicting age.

In Figure 6A, the results for predicting MMSE and age are shown. 
Using all MRI + EEG features achieves the best performance, with a 
Pearson correlation between true and predicted values of 0.67 for 
MMSE and 0.82 for age. When using all EEG features, the Pearson 
correlations are 0.56 for MMSE and 0.69 for age, while using all MRI 
features yielded Pearson correlations of 0.43 for MMSE and 0.76 for 
age. Using a limited set of a priori hypothesized relevant EEG fea-
tures resulted in a Pearson correlation of 0.15 for MMSE and 0.4 for 
age and using limited a priori features MRI features gave a Pearson 
correlation of 0.18 for MMSE and 0.7 for age. In Figure 6B, the results 
for predicting brain structure and EEG variables are shown. In brain 
structure volume prediction tasks, the thalamus and total ventricle 
volumes were best predicted, with a Pearson correlation between 
true and predicted values of 0.61 for thalamus and 0.5 for total 
ventricle using all EEG features. When using a priori features EEG 
features, the Pearson correlations were 0.42 for thalamus and 0.31 
for total ventricle volumes. In the EEG variable prediction task, fast 
spindle density and slow delta band power were able to be pre-
dicted best, with a Pearson correlation of 0.39 for fast spindle den-
sity and 0.28 for slow delta band power when using all MRI features, 
and 0.32 and 0.29, respectively when using a priori features only.

See Supplementary Table S3 for a complete list of which input 
features were used in the prediction tasks, and the numerical val-
ues including confidence intervals, shown in Figure 6.

Discussion
We were able to derive a number of key findings from our anal-
ysis of heterogeneous clinical MRI and PSG data. In summary: 
(1) we verified a priori hypotheses. These include positive corre-
lations between delta power and the volumes of specific frontal 

lobe regions and the thalamus; positive correlations between 
sleep spindle density and the volumes of the thalamus and hip-
pocampus; positive correlations between the percentage of REM 
sleep and cognitive test scores; and associations of brain struc-
ture volumes with dementia. It is noteworthy that some of these 
correlations weakened significantly after adjusting for age and 
sex., (2) Sensitivity analyses for different age and disease groups 
confirmed these results. Additionally, the effect sizes varied nota-
bly among the disease and health groups for the investigated 
variable pairs, suggesting distinct impacts of various diseases 
on  function-structure-behavior relationships., (3) Structural pre-
dictions of REM sleep were not confirmed., (4) When analyzing 
functional and structural variables in people diagnosed with 
MCI or dementia versus controls, brain structure volume varia-
bles showed higher differentiation than sleep EEG features., (5) 
Combining MRI and sleep features best-predicted cognition., 
(6) Significant differences between MCI or dementia versus 
healthy participants were observed for thalamus, hippocampus, 
amygdala, brainstem, and total ventricle volumes., and (7) Both 
chronological age and cognitive MMSE scores were substantially 
predictable from function and structure variables.

Our study, despite its variable clinical nature, yielded reassur-
ing results, confirming several known structure-function rela-
tionships related to sleep. Particularly, it reinforced the role of the 
thalamus and anterior cortex as significant sites of sleep slow-
wave generation, and the thalamic reticular nucleus as the prin-
cipal generator of sleep spindles. These spindles, representative 
of efficient cortical-subcortical connectivity, have been linked to 
memory-related abilities.

Several studies have also explored the associations between 
slow oscillatory activity in sleep EEG and brain structure var-
iables. A summary of these studies, including those conducted 
exclusively in healthy participants as well as those focusing on 

Figure 5. Leave-one-participant-out cross-validation (LOOCV) multivariate regression analysis.
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specific diseases like schizophrenia and Alzheimer’s Disease, 
can be found in Supplementary Table S3. Our analysis supports 
 previous findings, but with an important exception. We found 
that the total delta power across a full night of sleep, as opposed 
to the slow wave rate, was associated with gray matter volume in 
the frontal lobe (sum of anterior cingulate cortex and medial orb-
itofrontal cortex) and the volume of the thalamus. This held true 
regardless of adjustments for age and sex. Essentially, our results 
highlight the total delta power, rather than slow wave rate, as a 
key variable in associations with certain brain structures. This 
distinction might be due to the fact that slow wave rate computa-
tions rely on identifying individual SOs using amplitude thresh-
olds, a step not required when computing total delta power. In 
addition, we expand upon prior literature by assessing that sleep 
feature cluster consisting of SO and delta power features showed 
significant yet small-effect associations with the volumes of the 
thalamus, striatum, inferior parietal lobe, rostral anterior cingu-
late gyrus, ventricles, and white matter.

With regards to sleep spindles, building on Fogel et al.‘s [39] 
findings of a positive association between sleep spindle density 
and hippocampal volume, we identified a significant association 

of fast sleep spindle density with hippocampal volume prior 
to adjusting for age and sex (r=0.17). However, this association 
became insignificant after the adjustments were made (r=0.06). 
Confirming Buchmann et al.’s [86] results, our study further 
uncovered a small yet significant link between fast sleep spindle 
density and thalamic volume, both before adjustment (r = 0.31) 
and after (r = 0.11). In our exploratory analyses, the two NREM 
clusters containing sleep spindle features were among the clus-
ters showing the largest and most consistent associations with 
volumes across different brain structures (thalamus, hippocam-
pus, striatum, inferior parietal lobe, rostral anterior cingulate 
cortex, ventricles, and white matter). Individual sleep features 
driving those associations were fast spindle density, EEG signal 
kurtosis in N2 (indicating fluctuations), theta–alpha power kur-
toses in N2, and SO-sleep spindle coupling.

Few studies have investigated relationships between features 
of REM sleep and brain structure. Reinhard et al. [87] found that 
the thickness of the left caudal anterior cingulate cortex was 
positively associated with the 24–32 Hz EEG beta power band 
during REM sleep. Baril et al. [88] found no associations between 
REM sleep and MRI markers. While none of our a priori REM 

Figure 6. Leave-one-participant out cross-validation multivariate regression analysis.
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sleep—brain structure (isthmus cingulate, amygdala, brainstem) 
hypotheses showed significance, both percentage of REM sleep 
and the volume of the amygdala were associated with cogni-
tion (r = 0.16 and r = 0.20, respectively). In the exploratory anal-
ysis, two REM clusters were associated with brain structures: a 
cluster containing delta power and EEG fluctuation features was 
associated with the volumes of the thalamus, striatum, ventri-
cles, white matter and inferior parietal lobe, and a cluster con-
taining features about REM timing was associated with thalamic 
and striatal volumes. Neuroimaging correlates of REM sleep 
may be limited by the spatial resolution of current scanners for 
the subcortex/brainstem, which may be overcome by high field 
(e.g. 7 Tesla) imaging in combination with concordant updates 
to Freesurfer and SynthSeg software that use atlases generated 
from the higher-resolution images.

Cognitive MMSE scores and chronological age (as a measure of 
brain aging) were both predictable from function and structure. 
When predicting MMSE (N = 160), using EEG variables as predic-
tors resulted in better prediction performance than using MRI 
variables (r-squared 0.23 vs. 0.16, respectively). When predicting 
age, MRI features resulted in better predictive performance com-
pared to EEG (R-squared 0.57 vs. 0.48). In both tasks, combining 
MRI and EEG variables lead to superior performances (MMSE 
R-squared 0.4, age R-squared 0.67). The prediction performance 
decreased mild to moderately when we used only features that 
were part of our a priori hypotheses—thus, using specific varia-
bles ranging from spectral features, complexity features to spin-
dle/slow-oscillation features improved predictive performance 
compared to using only well-known and established sleep/
structure variables. This phenomenon was true as well when 
we predicted specific structure variables from all versus limited 
EEG features and specific EEG features from all vs. limited MRI 
features.

We revealed intricate associations between sleep EEG function, 
brain structure as determined by MRI, and cognition assessed by 
MMSE scores. We observed moderate effect sizes between these 
factors before controlling for age and sex, which were signifi-
cantly reduced after these demographic variables were taken into 
account. This highlights that while age and sex can indeed explain 
a considerable portion of the structure-function-cognition rela-
tionships, there exist meaningful residual associations that per-
sist even after controlling for these variables. Intriguingly, each 
link within this triangle of sleep function, brain structure, and 
cognition seems to harbor unique information that isn’t wholly 
encapsulated by any other pair, revealing an intriguing pattern 
of pairwise non-overlapping insights. This was evidenced in both 
our a priori hypothesis testing, for instance, where REM sleep and 
the amygdala each demonstrated significant correlations with 
MMSE performance yet showed no significant interrelation, and 
in our predictive analyses. Here, we found that while either EEG or 
MRI data alone could reasonably predict cognitive performance, 
a combined approach resulted in improved accuracy. This under-
scores the importance of an integrated, holistic view of the rela-
tionship between sleep, brain structure, and cognition.

How may this type of information be clinically useful and 
impact patient care? The polysomnogram provides information 
about brain, cardiac, respiratory, and lung health at a minimum. 
Beyond the usual “numbers” used clinically (such as the apnea–
hypopnea index and hypoxic impacts), even using the standard 
sleep stages provides information about brain health (visually 
poor spindling or age-disproportionate excessive N3 age), lung 
health (disproportionate desaturation for mild respiratory events) 

or cardiac systolic/diastolic function (long-cycle periodic breath-
ing). There are numerous examples of “useful and meaning-
ful incidental findings” in clinical testing, including silent brain 
tumors-MRI, old myocardial infarctions-ECG, adrenal tumor-MRI, 
lung cancer (chest computerized tomography), sleep apnea risk 
estimation (cephalometry), and numerous blood biomarkers, as 
examples. The data from polysomnography is largely discarded, 
and combined with clinical brain MRI, could in an automated 
fashion provide “incidental” risk information for brain health. 
Polysomnography is increasingly restricted to older sicker 
patients (home sleep testing siphons off the more classic apnea), 
the exact population where brain health concerns are increasing. 
Extracting the maximum useful information from clinical testing 
is a reasonable strategy if not burdensome. The combination of 
MRI with sleep data may also be a way to assess improvements 
in brain health with disease-modifying therapies, using machine 
learning approaches. This includes not only possibly risk strati-
fying for early dementia but also brain health in conditions such 
as depression, post-traumatic stress disorder and schizophrenia. 
The increasing availability of ambulatory EEG raises the possi-
bility of automated tracking of brain health through the type of 
analysis we present, though it needs to be validated using home 
recording devices.

Our study has important limitations. The study design was 
cross-sectional; therefore, we could not assess longitudinal 
changes within participants. Furthermore, we used single sleep, 
MRI, and cognition measures per participant which were as far 
as 5 years apart. Associations could be estimated more robustly 
with multiple visits and the measures if collected closer in time. 
The diversity of participants’ health conditions, which on the 
one hand is a strength of our study, comes with disadvantages as 
well, as the confounding effects of the different diagnoses may 
not be fully controlled. These comorbid conditions can influence 
sleep patterns and brain structure independently of each other. 
Also, although MRI sequences varied widely across participants, 
we did not explore issues such as how the choice of acquisition 
sequences in the scan was related to the clinical indication for 
the scan, perhaps leading to biases such as more accurate brain 
volume predictions for older or sicker patients. In EEG data pro-
cessing, we adopted amplitude-based artifact rejection criteria 
for its simplicity and consistent application across datasets and 
participants, though the results depend somewhat on the cho-
sen threshold. Furthermore, there is likely a selection bias as the 
participants were from a hospital setting, limiting generalizability 
of the findings to the wider population. Neuropsychological eval-
uation data were only available for a subset of the participants 
and assessed via the MMSE score only. Although this study was 
able to predict chronological age and cognitive MMSE scores from 
functional and structural variables, the predictive performance 
varied, and the robustness of these models may need further 
evaluation. This is particularly true when considering the small 
effect sizes in some of the associations.

In summary, we confirmed previously hypothesized associ-
ations between sleep patterns and brain structures using data 
extracted from routine clinical sleep studies and MR images. 
The finding that data-driven selection of EEG and MRI features 
perform substantially better than hypothesis-driven features for 
predicting cognitive status and age suggests that multivariable 
analytics may have a role in practice. The study demonstrates the 
potential for an expanded use of clinical EEG and structural MRI 
data for future studies and possibly automated analysis to aid 
clinical practice.
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