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Understanding the relationship between brain structure, func-
tion, and behavior is a challenge that many have attempted to 
undertake. It could help us pinpoint the role of specific brain 
regions and how they interact towards characterizing novel bio-
markers for neurological and psychiatric conditions of public 
health relevance such as cognitive decline, Alzheimer’s disease 
and related dementias, Parkinson’s disease, and among others 
[1]. Electrophysiological assessments during sleep have been 
shown to capture important signatures of brain function and 
cognition [2, 3], and the sleep electroencephalogram (EEG) have 
been proposed as a tool to estimate brain health [4], a marker 
that has been associated with import age-related outcomes [5, 
6]. However, the feasibility of robust investigations using prospec-
tively collected, representative and comprehensive brain imaging 
data, including functional imaging, and sleep electrophysiologi-
cal data, along with neuropsychological assessments that cover 
a wide range of cognitive functions is limited. Due to the high 
participant impact and cost, studies often include small sample 
sizes [7, 8] and lack in representation of underserved gender, sex, 
race, and ethnic minorities [9], minimizing the impact and gener-
alizability of such important findings to these groups.

A possible approach that helps bridge this gap involves lever-
aging existing clinical data, collected over many years in sleep 
laboratories and imaging facilities and integrate with cognitive 
assessments data from neurological clinics. These “real world” 
data sources, despite being collected for clinical purposes and 
knowingly subjected to biases outside of the rigorous control 
of investigators prospectively collecting data [10, 11], have the 
potential to highlight important signals that might deserve fur-
ther investigation in more controlled settings. Conventionally, 
the medical community has taken a more reductionist approach, 
trying to identify a single or small set of metrics that could bet-
ter represent someone’s disease severity, despite the wealth of 
data collected as part of sleep electrophysiological assessments 
and imaging analyses; the apnea–hypopnea index being the 

most well-known example in sleep medicine, in the context of 
obstructive sleep apnea [12]. With the broader availability of clin-
ical information systems, electronic health records, computing 
power, and recent advances in artificial intelligence [13], such 
task is more achievable. Moreover, statistical methods and study 
design considerations that help minimize some of the potential 
biases of using “messy” clinical data exist [13], which brings hope 
and enthusiasm to the scientific community to support data inte-
gration efforts towards utilizing these data, largely “untouched,” 
to support evidence generation. Specific approaches relevant to 
our sleep medicine community have been proposed [14, 15], and 
many efforts to improve representation and harmonization of 
clinical sleep data are underway [16].

One such investigation is featured in this issue of SLEEP [17], 
where Wei, Ganglberger, et al. describe an interesting approach 
to integrate brain magnetic resonance imaging (MRI), sleep EEG 
extracted from polysomnography (PSG) recordings, and cognitive 
assessments, with the goal to determine associations between 
brain structure, brain function during sleep and cognition. This 
study leveraged data across clinical information systems to 
identify a cohort of patients (N = 623) that underwent clinical, 
full-night PSGs, and clinical brain MRIs within 5 years of each 
other and extracted relevant sleep EEG physiological features 
as well as MRI regional volumetric measurements. In a subset 
of patients with available data (N = 160), the authors extracted 
cognitive data from the electronic health records, supporting 
the multimodal investigation of brain structure, function, and 
behavior.

One interesting approach taken by authors was to first pro-
pose a series of hypothesis-driven analyses, informed by prior 
literature. These included assessments of associations between 
sleep spindles/sigma power, thalamic volumes, and memory defi-
cits; sleep slow wave/delta power, cortical volumes, and impaired 
cognition; overall associations between sleep macro and micro-
structure and specific brain region volumes and cognition; and 
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whether combining sleep EEG and MRI-derived brain volumes 
would predict cognition better than each data modality alone. 
Several of these a priori associations have been confirmed, such 
as positive correlations between delta power volumes of fron-
tal lobe regions and thalamus, as well as between sleep spindle 
density and thalamic and hypothalamic volumes. Some associ-
ations were not confirmed, such as structural region and REM 
sleep characteristics, although literature linking REM sleep and 
specific brain regions is scarce and controversial [18, 19]. When 
the authors combined a priori MRI and sleep EEG features, predic-
tion of cognition scores improved. These initial findings were also 
modified by age, sex, and other disease groups (dementia, mild 
cognitive impairment, depression, cancer, diabetes, congestive 
heart failure, peripheral vascular disease, cerebral vascular dis-
ease, and Charlson comorbidity index), but generally supporting 
initial hypotheses. Moreover, and perhaps also as expected, brain 
imaging features were more relevant to differentiate patients 
with mild cognitive impairment or dementia as compared to con-
trols than sleep EEG features.

Next, the authors used a hypothesis-free data-driven approach, 
to extend our understanding of how variation in sleep EEG, brain 
region volumes and cognition relate to each other, and whether 
it detect further signals beyond the hypothesized correlations. To 
minimize the sleep EEG feature space (776 initial features), input 
data was grouped into 24 distinct clusters explaining variability in 
different macro and microstructural sleep measurements. These 
were then assessed against clinical traits, as well as brain region 
volumes and cognition. Major associations included positive cor-
relations between cognition and “delta and theta/alpha power in 
REM sleep” and “delta/fast power ratio in W+N1.” Positive correla-
tions of “N2+N3 alpha and sigma power, and spindle activity” and 
age, thalamus and striatum volumes were also observed. Finally, 
the authors demonstrated that including all sleep EEG and MRI 
features (as opposed to a priori features used in hypothesis-driven 
analyses) substantially improved prediction of chronological age 
and cognition, as well as specific pairwise relationships between 
sleep EEG features and MRI-derived brain regions. These findings 
support the notion that there is much more information hidden 
in the data than what we have been hypothesizing. The authors 
also demonstrate in a robust way how machine learning and arti-
ficial intelligence can help us pinpoint the missing variance in 
these signals towards better characterizing such biological phe-
nomena of interest.

Some important limitations of the study are worth mention-
ing, particularly as they relate to the settings in which data was 
collected (i.e. clinical vs. research), and their inherent biases such 
as lack of generalizability to the population, potential effect mod-
ification due to ascertainment biases for comorbidities (despite 
authors using chart review, which still may not fully represent 
a patient’s full health record), and timing between PSGs, MRIs, 
and cognitive assessments. Addressing these limitations in future 
studies with larger and more diverse samples will be essential, 
as this clinical sample is still racially and ethnically homoge-
neous (>84% white and > 88% non-Hispanic/Latino), and strati-
fied analyses (by sex, age groups, and time difference between 
assessments) currently resulted in small sample sizes, likely 
subjected to lower statistical power. Despite these limitations, 
this proof-of-principle study brings enthusiasm about the pos-
sibilities of leveraging noisy clinical data towards enhancing 
our understanding. Enabling multi-site studies to help mitigate 
these limitations will be fundamental as we continue our quest 
towards understanding brain structure, function during sleep 
and behavior.
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