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Abstract

Study Objectives: Age-related comorbidities and immune activation raise concern for advanced brain aging in people living 
with HIV (PLWH). The brain age index (BAI) is a machine learning model that quantifies deviations in brain activity during 
sleep relative to healthy individuals of the same age. High BAI was previously found to be associated with neurological, 
psychiatric, cardiometabolic diseases, and reduced life expectancy among people without HIV. Here, we estimated the effect 
of HIV infection on BAI by comparing PLWH and HIV− controls.
Methods: Clinical data and sleep EEGs from 43 PLWH on antiretroviral therapy (HIV+) and 3,155 controls (HIV−) were 
collected from Massachusetts General Hospital. The effect of HIV infection on BAI, and on individual EEG features, was 
estimated using causal inference.
Results: The average effect of HIV on BAI was estimated to be +3.35 years (p < 0.01, 95% CI = [0.67, 5.92]) using doubly robust 
estimation. Compared to HIV− controls, HIV+ participants exhibited a reduction in delta band power during deep sleep and 
rapid eye movement sleep.
Conclusion: We provide causal evidence that HIV contributes to advanced brain aging reflected in sleep EEG. A better 
understanding is greatly needed of potential therapeutic targets to mitigate the effect of HIV on brain health, potentially 
including sleep disorders and cardiovascular disease
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Statement of Significance

There is concern that HIV causes advanced brain aging despite antiretroviral therapy, and biomarkers are greatly needed 
to identify this effect in people living with HIV (PLWH). Using a machine learning model of brain aging based on sleep 
EEG, we found that HIV increases brain age after adjusting for potential confounders. We also found that slow waves were 
markedly attenuated during deep sleep among PLWH. Our study shows that sleep EEG can be used to measure brain age 
in PLWH, which can serve as an inexpensive and easily deployable biomarker.

XX

XXXX

XXXX

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/44/8/zsab058/6204183 by guest on 16 February 2023

https://orcid.org/0000-0002-0218-8612
https://orcid.org/0000-0002-5041-8312
https://orcid.org/0000-0002-5575-3953
https://orcid.org/0000-0002-5677-6954
mailto:mwestover@mgh.harvard.edu?subject=


2 | SLEEPJ, 2021, Vol. 44, No. 8

Introduction

People living with HIV (PLWH) in the current antiretro-
viral therapy (ART) era are at increased risk for age-related 
comorbidities including cardiovascular diseases [1–3], meta-
bolic disorders [4, 5], osteoporosis, frailty [6], and HIV-associated 
neurocognitive disorders (HAND) [7, 8]. Recent studies based on 
magnetic resonance imaging (MRI) show that brains of PLWH 
have structural changes characteristic of older individuals [9, 
10], suggesting advanced brain aging.

One critical factor not addressed in the current ART era is 
the relationship between brain aging and sleep. Sleep changes 
predictably with age [11–13]. For example, slow wave activity 
(SWA, EEG oscillations of <4 Hz) during deep sleep is known to 
attenuate gradually beyond puberty [14]. Notably, reductions 
in SWA are also seen in disease states such as alcohol use dis-
order, insomnia, and dementia. Descriptions prior to effective 
ART described HIV-mediated changes in slow wave power during 
non-REM sleep early during infection [15], and later on dimin-
ished sleep spindles [16] and increased sleep fragmentation [17]. 
Recent studies show high rates of insomnia and other sleep dis-
turbances [18, 19], but more comprehensive analyses are needed.

We previously developed a machine learning algorithm that 
predicts sleep-EEG-based brain age using a dataset of 2,532 
healthy HIV− participants [20]. Our prior work showed that 
neuropsychiatric diseases, hypertension, and diabetes are as-
sociated with increased brain age [20], and excess brain age 
predicts higher mortality [21]. Recently we showed that brain 
age monotonically increases from cases of non-dementia to 
mild cognitive impairment to dementia [22]. Due to advances 
in home-based EEG, sleep EEGs are inexpensive, participant-
friendly [20], and more accessible for use in low–middle-income 
countries [23–25]. Here, we investigate the impact of HIV on 
brain aging measured by the brain age index (BAI), the difference 
between brain-predicted age and chronological age. We first es-
timated the effect of HIV infection on BAI. Then we estimated 
the effect on individual sleep EEG features in HIV+ compared 
to HIV− controls. In preliminary analysis, we additionally found 
that cardiovascular and sleep-related diseases may potentially 
mediate the effects of HIV on BAI. Overall, sleep EEG is found to 
be a potential new biomarker of brain aging in PLWH.

Methods

Standard protocol approvals, registrations, and 
patient consents

The study was conducted under a protocol approved by the Partners 
Institutional Review Board, with waiver of written consent.

HIV+ and HIV− cohorts

We conducted a retrospective cohort study at Massachusetts 
General Hospital. Using the Partners Research Patient Data 
Registry (RPDR), a large database of historical electronic health 
records, we retrospectively searched for HIV+ patients (Figure 1). 
We identified all patients who had undergone a full night diag-
nostic sleep study between 2008 and 2018, who had received an 
International Classification of Diseases, Ninth or Tenth Revision, 
Clinical Modification (ICD-9-CM or ICD-10-CM, respectively) 
billing code of B20 (ICD-10) or 042 (ICD-9), which indicates HIV 
infection. HIV billing codes are highly sensitive for patients with 
a diagnosis of HIV [26]; however, there are cases where an HIV 
billing code is assigned for other reasons such HIV testing, even 
if the test is negative. Therefore, for each of these patients, we 
performed manual chart review to confirm HIV infection and 
that the HIV diagnosis occurred before the date of the sleep 
study. HIV is the exposure of interest in this study. HIV− controls 
were drawn from the Massachusetts General Hospital sleep lab 
dataset described in [20] that had the same sleep study type as 
the HIV+ participants (full-night, diagnostic studies). No HIV+ 
participants were of Asian or Middle Eastern descent, so we ex-
cluded controls of those racial and ethnic backgrounds.

Sleep EEG-based brain age: outcomes

We used the same preprocessing and brain age computation 
used in [20]. Sleep EEG features from six channels (F3-M2, F4-M1, 
C3-M2, C4-M1, O1-M2, O2-M1) were computed and averaged 
across all 30-s epochs according to sleep stage (Wake, REM, N1, 
N2, N3). We log-transformed and standardized (z-score) the fea-
tures before using them as inputs to the brain age prediction 
model. There were 480 features, 96 for each of the five sleep 
stages. See [20] for details on all features. Sleep EEG frequency 
bands which a portion of the features were based on are defined 
as follows: delta band (δ, 1–4 Hz), theta band (θ, 4–8 Hz), alpha 
band (α, 8–12 Hz), and spindle or sigma band (σ, 11–15 Hz). For 
each participant, the model outputs a brain age (BA), which was 
compared to chronological age (CA) to obtain the BAI: BAI = BA 
− CA. We treated BAI as the primary outcome of interest. The 
log-normalized, unstandardized version of each individual EEG 
feature was treated as a secondary outcome of interest.

Clinical data acquisition: HIV-related

We performed manual chart review to determine AIDS history, 
viral load, ART adherence and HIV medication history, as well 
as a history of secondary brain infection, a brain tumor, or HIV 

Figure 1. Flowchart of HIV+ participants inclusion and exclusion. N is the number of HIV+ participants eligible following each evaluation step. 43 HIV+ participants 

with diagnostic studies of sufficient quality were ultimately selected for analysis. CPAP, continuous positive airway pressure.
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encephalitis. AIDS was defined as a documented CD4 count below 
200, or confirmation of AIDS or an opportunistic infection pre-
ceding the sleep study in a physician’s medical note. We found 
the viral load measure nearest to the sleep study within 1 year to 
determine viral suppression near sleep testing. Viral loads labeled 
as undetected or below 200 copies/mL were considered undetect-
able in this study. Adherence to ART was determined by evi-
dence of continuously prescribed medications and maintenance 
of CD4+ cell levels. We gathered data on efavirenz, a commonly 
prescribed non-nucleoside reverse transcriptase inhibitor, due to 
its known neuropsychiatric effects and effects on sleep [27, 28]. 
Additionally, we gathered usage of integrase strand transfer in-
hibitors (INSTIs; dolutegravir, raltegravir, bictegravir, elvitegravir), 
because of their potential neuropsychiatric effects [29].

Clinical data acquisition: covariates

We gathered the following covariates (collectively denoted as 
C): age, sex (male/female), race (Black/Hispanic/White/Other), 
and history of tobacco use disorder or alcohol use disorder. 
Substance use disorder was not included among covariates 
because we determined that this categorization was too am-
biguous and potentially unreliable, as discussed in more detail 
in Supplementary Material: Results. The other covariates men-
tioned above were treated as potential confounders; that is, they 
could affect both the prevalence of the exposure, HIV, and the 
primary outcome, BAI, or the secondary outcomes, the features 
used to compute BAI. We used Phenorm [30] to reduce the risk of 
bias in gathering data. Phenorm is a validated machine learning 
tool to infer the presence of medical conditions based on auto-
mated analysis of clinical notes and ICD codes.

We collected data on additional covariates which we deter-
mined were unlikely to act as confounders, but rather could be 
influenced by HIV infection and act as mediators of HIV’s ef-
fects on brain aging. These include co-morbidities that are 
more common in the setting of HIV and may affect brain health 
(presence determined by Phenorm). We also treated multiple 
categories of medications that can affect sleep as potential me-
diators because HIV can potentially increase the risk of neuro-
psychiatric disorders and the need to be treated with these 
medications. All data and results of mediation analysis are pre-
sented in the Supplemental Material.

Causal inference analysis

The total effect (TE) of HIV infection on BAI is the difference in 
average BAI between HIV+ and HIV− participants after adjusting 
for potential confounders. The TE can be estimated via a ran-
domized controlled trial, or in cases where such a trial is not 
possible, by adjusting for confounding computationally. We 
therefore estimated TE from retrospective observational data 
through the potential outcome framework. In this framework, 
two potential outcomes are estimated for each participant 
through statistical modeling: the potential BAIs if assigned 
either to the HIV+ group or to the HIV− group. Each potential 
outcome is then averaged across the participants. The TE is the 
difference between the sample-averaged BAI in the HIV+ assign-
ment group and the sample-averaged BAI in the HIV− assign-
ment group. Although we show these sample-averaged potential 
outcomes, the TE is of greatest interest. Note that the TE is also 
referred to as the Average Causal Effect (ACE). See Supplemental 

Material: Methods: Causal Inference Assumptions for the pre-
cise definition of the ACE/TE and for details on assumptions 
made in causal statistical inference.

We used doubly robust estimation (DRE) to estimate the TE 
due to its robustness against model misspecification bias. DRE 
requires fitting two models: (1) the outcome model, a model 
of how HIV status and covariates predict BAI and (2) the pro-
pensity model, a model of how covariates influence HIV status. 
We fit these models with nested fivefold cross validation. See 
Supplemental Material: Methods: Doubly Robust Estimation for 
more details on DRE, and Supplemental Material: Methods: Cross-
Validation for further details on the cross-validation procedure. 
We also performed matching as an additional nonparametric 
analysis to estimate the TE of HIV on BAI. Methods and results 
are described in the Supplemental Material.

Statistical analysis

In comparison of BAI between the HIV+ and HIV− cohorts, we cal-
culated a p-value using the two-sided student’s t-test. For the out-
comes in analyses (BAI and BAI features), we calculated p-values, 
the standard error of the mean (SEM), and 95% confidence inter-
vals. For p-values, we report the actual value, except where 
p < 0.01. For other continuous variables, p-values are calculated 
via the rank-sum test, and for categorical variables, by the chi-
squared test. To adjust for multiple comparisons when evaluating 
the statistical significance of BAI features, we determined the ap-
propriate significance threshold for a maximum false discovery 
rate (FDR) of 0.1 [31]. We estimated confidence intervals using 
bootstrapping, repeatedly sampling with replacement such that 
each bootstrapped sample size was equal to the sample size of 
the original dataset. For each bootstrapped dataset, the TE of 
HIV infection on BAI was estimated. We performed bootstrap 
resampling 1,000 times. We obtained 95% confidence interval 
from the 2.5% and 97.5% percentiles of the bootstrap distribution.

Sensitivity analysis

We performed sensitivity analysis using the E-value, de-
fined as the minimum effect that an unmeasured confounder 
would need to have with both the prevalence of HIV infection 
and BAI to reverse our findings [32]. E-value is computed as 
E = RR+

√
RR (RR-1), where RR is the risk ratio of the effect of 

HIV on BAI. Since BAI is a continuous outcome, we assume it 
follows a Gaussian distribution with mean from the causal in-
ference and standard deviation from bootstrapping and com-
pute the cumulative probability of BAI greater than 0. Therefore, 
RR  =  P(BAI>0 | HIV+ among all participants) / P(BAI>0 | HIV− 
among all participants).

Data availability statement

De-identified, derived data supporting the findings of this study 
are available from the corresponding author on request.

Results

BAI and covariates characteristics in HIV+ and HIV−

We identified 3,155 HIV− control patients, and 43 HIV+ patients 
(Figure 1) with comparable diagnostic sleep studies. Among 
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HIV+ compared to HIV− patients (Table 1), there were more men 
(79% HIV+ vs. 51% HIV−, p < 0.01), greater percentages of indi-
viduals with tobacco use (46% vs. 21%, p < 0.01) and alcohol use 
(37% vs. 8%, p < 0.01). Age (50 vs. 49 years old, p = 0.77) and the 
proportion of white patients between HIV+ and HIV− cohorts 
(79% vs. 70%, p = 0.16) were similar. Of 41 HIV+ participants with 
viral load data available, 38 had suppressed viral loads at the 
time of the sleep study. There were no cases of past secondary 
brain infection or a brain tumor, and one case of HIV encephal-
itis thought to be due to immune reconstitution inflammatory 
syndrome (neuro-IRIS), from which the patient recovered. Their 
BAI was −2.50. A total of 9 (44%) HIV+ participants had a history 
of AIDS. Four participants were prescribed efavirenz. A total of 
13 were prescribed an integrase strand transfer inhibitor (INSTI) 
at the time of their sleep study. We compared the distribution 
of BAIs of the INSTI group versus the group that was not on 
INSTIs. The average BAI of the INSTI group was 1.33 while the 
average BAI of the non-INSTI group was 7.34 (Mann–Whitney 
U-test, p  =  0.017). All HIV+ participants were determined by 
chart review (M.L., C.B., G.R.) to be adhering to ART at the time 
of the sleep study.

HIV− participants had a mean BAI of −0.18 years (SD = 10.24) 
and 1,540/3,155 (49%) of participants had a positive BAI, ie. a 
brain age predicted to be higher than chronological age (Figure 2).  
In contrast, HIV+ participants had a mean BAI of 4.4  years 
(SD = 8.77), with 28/43 (65%) of participants having a positive BAI. 
In sub-analyses restricted to the HIV+ cohort, we did not find a 
significant association of BAI with AIDS history (Supplementary 
Figure S1).

HIV increases BAI after adjusting for confounders

To estimate the TE of HIV infection on BAI, we defined a causal 
diagram (Figure 3, A) based on our clinical knowledge depicting 
the potential relationships among BAI, HIV, and the set of poten-
tial confounders C: age, sex, race, tobacco use disorder, and al-
cohol use disorder. Using this model, we computed the average 
potential outcome difference of BAI between HIV− versus HIV+ 
participants. Average BAI for the HIV− group was estimated 
to be −0.16 years (SEM = 0.18 years), while average BAI for the 
HIV+ group was estimated to be 3.19 years (SEM = 1.43 years). 
TE, which is the difference in the average potential outcomes 
of BAI between HIV statuses, was therefore 3.35 years (p < 0.01, 
95% CI = [0.67, 5.92]) (Figure 3, B). We found a similar and stat-
istically significant effect using matching which we report in 
Supplementary Table S1, Supplementary Figure S2. With both 
methods, BAI was significantly elevated in the setting of HIV 
infection.

Table 1. Dataset demographics, potential mediators, and HIV-related 
variables

HIV+ HIV− p-value

Number 43 3,155  
Demographics (n, %)
Age (median, IQR) 49 (46, 54) 50 (38, 62) 0.77
Male (n, %) 34 (79%) 1,594 (51%) < 0.01
White (n, %) 30 (70%) 2,481 (79%) 0.16
Tobacco use disorder 20 (46%) 686 (21%) < 0.01
Alcoholism 16 (37%) 267 (8%) < 0.01
HIV-related (n, %)
AIDS history 19 (44%) NA  
Virally suppressed at  

sleep study
38/41 (93%)   

INSTIs taken at sleep study 13 (30%) NA  
Efavirenz taken at sleep study 4 (9%) NA  

Figure 2. Brain ages among HIV+ and HIV− participants. Scatter plot showing 

each participant’s Chronological Age (CA), the age at the time of the sleep study, 

versus the Brain Age (BA), the sleep EEG-predicted age. The solid line represents 

BA = CA, or BAI = 0. Above and below the line are indicated as the BAI > 0 and BAI 

< 0 regions, respectively.

Figure 3. BAI is elevated by HIV after adjusting for potential confounders. (A) 

Causal diagram of the variables. An arrow from a variable X to another variable 

Y indicates our assumption that X causally affects Y. C is the set of covariates. 

HIV represents the presence or absence of the exposure to HIV infection. BAI 

represents the outcome variable, the BAI. The red arrow represents the effect 

of interest, which is measured as the difference in the expected potential out-

comes of BAI in the presence and absence of HIV. (B). Bar chart showing the 

expected potential outcome of BAI in the absence (HIV−) and presence (HIV+) 

of HIV. Error bars depict the standard error of the mean (SEM; HIV− = 0.18 years, 

HIV+ = 1.43 years). The difference in expected potential outcomes of BAI is sig-

nificant (p < 0.05), indicated by asterisks.
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Sensitivity analysis for unmeasured confounding

The risk ratio (RR), defined as P(BAI>0 | HIV+ among all par-
ticipants) / P(BAI>0 | HIV− among all participants) was 2.3. 
Therefore, sensitivity analysis yielded an E-value of 4.0, which 
means, to explain away the effect of HIV on BAI, an unmeasured 
confounder should have at least a risk ratio of 4.0 for both HIV 
infection and BAI.

EEG features underlying BAI are altered by HIV

We also estimated the effect of HIV on the specific EEG features 
used to compute BAI. In the causal diagram (Figure 3, A), for each 
analysis we performed the same method of estimating the TE, 
but replaced the primary outcome BAI with an individual sleep 
EEG feature as a secondary outcome. With a pre-determined 
maximum FDR of 0.1, we identified 34 EEG features statistically 
significantly altered by HIV infection (Figure 4). There were no 

statistically significant changes in features in the Wake state 
(Supplementary Figure S3). In REM, three features were altered 
by HIV, each associated with reduced delta band power (Figure 
4, A and B). In stage N1 (Figure 4, C and D), five significant fea-
ture changes were identified, all reflecting increased line length 
(a measure of signal complexity). In Stage N2 (Figure 4, E and 
F), there were 10 significant feature changes; 9 were related to 
reduction in delta power, and 1 to an increase in the theta-to-
alpha power ratio. In stage N3 (Figure 4, G and H), there were 12 
significant features, all corresponding to a relative reduction in 
HIV of delta band power.

Representative sleep spectrograms and hypnograms of 
HIV+ and HIV− participants are shown in Figure 5. Compared 
to that of the HIV− participant, the spectrogram of the HIV+ 
participant visibly reflects low-frequency delta power (1–4 Hz) 
markedly reduced throughout the night, most notably during 
N2 sleep.

Figure 4. Individual EEG features underlying brain age are altered by HIV. Rows show features by sleep stage: (A, B) REM. (C, D) N1. (E, F) N2. (G, H) N3. (A,C,E,G) Volcano 

plots of significance level of changes in potential outcome of BAI features versus log2 fold change. Dotted lines represent the significance threshold for a FDR of 0.1. 

(B, D, F, H) Bar charts comparing potential outcomes of specific BAI features in the presence (HIV+) and absence (HIV−) of HIV. Only the significant features are shown. 

Solid horizontal black lines show SEM.
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Discussion
In this study, we found that HIV independently increases ap-
parent brain age as measured by the BAI, with an average in-
crease of 3.35 years (95% CI [0.67, 5.92], DRE). HIV+ subjects not 
on integrase inhibitors (INSTIs) during their sleep study had a 
higher average BAI. One HIV+ subject had a past history of HIV 
encephalitis, but given that their BAI was −2.50, their inclusion 
in the study cannot explain the average increase in BAI observed 
in the HIV+ group. Otherwise, HIV+ subjects had no history of 
secondary brain infection, encephalitis, or a brain tumor. We 
identified 34 sleep EEG features that were significantly altered 
by HIV infection. The most dominant EEG change in HIV is a re-
duction in delta band power (1–4 Hz), also referred to as SWA, 
during NREM sleep (N2, N3). Finally, we found that comorbidities 
may act as mediators and account for a portion of HIV’s effect 
on BAI (26%); however, these results did not reach statistical sig-
nificance possibly due to limited sample size.

Prior work has established that PLWH are at increased risk 
of advanced aging, [33] with previously discovered biomarkers 
such as somatic mitochondrial DNA mutations [34, 35] and 
markers of T-cell senescence [36], and decreased HLA methy-
lation levels [37], telomere length [38, 39], and MRI. Advanced 
brain aging, vascular cognitive impairment, and Alzheimer’s 
disease (AD) or AD-related dementia are higher risk among 
PLWH due to cerebrovascular disease [2, 40, 41], immune ac-
tivation [42, 43], deposition of amyloid plaques and other 
neurodegenerative-associated proteins [44–46], persistence of 
HIV-infected cells in sanctuary sites [47], and higher rates of 
smoking [48]. Our study provides several new insights about 
advanced brain aging in PLWH and offers a new biomarker for 
brain aging. Our results show that sleep EEG identifies increased 
brain aging among PLWH, after adjusting for demographic and 
lifestyle factors, similar to prior work on MRI-based brain age. 
Sleep EEG is more cost-effective and easier to deploy than MRI, 
and thus shows promise as a biomarker for tracking brain aging 
in the HIV+ population, including in the outpatient and home 

setting. Additionally, our lab recently found that BAI increases 
with mild cognitive impairment and dementia [22], providing 
new evidence that BAI tracks clinically meaningful cognitive 
characteristics of the aging brain. We did not find an association 
of BAI with AIDS history or efavirenz, which we consider an in-
conclusive finding given the limited sample size. HIV+ subjects 
not on INSTIs had a higher average BAI than HIV+ subjects on 
INSTIs; however, we have no clear hypothesis for why this would 
occur in general, and the numbers of subjects in each group are 
quite small, thus we consider this a finding of uncertain sig-
nificance and validity. We also identified specific sleep features 
that are altered in HIV. About 76% (26/34) of features with a stat-
istically significant change were associated with a reduction in 
delta (1–4 Hz) band power; this was identified in multiple EEG 
channels and across REM, N2, and N3. SWA is a predominant 
feature of N2 and N3, and the presence of SWA corresponds 
to greater sleep depth [14]. The amplitude and incidence of 
SWA is reduced in normal aging, in sleep disorders such as in-
somnia and obstructive sleep apnea, and reduced SWA is also 
seen secondary to fibromyalgia, ADHD, and dementia. While 
the exact functional effect of SWA on health remains unclear, 
SWA is associated with increased glymphatic flow, [49] which 
clears metabolic waste products from the interstitial fluid of the 
parenchyma, including β-amyloid [50],and supports memory 
consolidation [51, 52]. Recently, a potential causal mechanism 
linking low-frequency oscillations to glymphatic clearance was 
discovered [53], providing new evidence for the hypothesis that 
reduced low-frequency oscillations during non-REM sleep is a 
risk factor for Alzheimer’s dementia [54].

Our study has several methodological strengths. First, we 
were able to use a large dataset containing thousands of control 
cases, which facilitates estimation of the effects of covariates 
on BAI and reduces uncertainty about the average HIV− BAI. 
Second, our use of DRE, and replication of our results by 
matching, demonstrates that our findings are qualitatively ro-
bust to different choices of estimators. Third, we controlled the 

Figure 5. Hypnograms and spectrograms of representative HIV− and HIV+ participants. (A) HIV−. (B) HIV+. The x-axis is time since the sleep EEG recording in hours. The 

upper panel in each subplot shows the trajectory of sleep stages; the lower panel shows the spectrogram with y-axis being frequency in Hz.
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FDR when analyzing the effect of HIV on EEG features, such that 
only relatively large effect sizes were found to be statistically 
significant. Reduction in delta band power in particular was also 
consistent across multiple sleep stages and EEG channels.

As a retrospective cohort study, our study has several limi-
tations. First, by only including participants from the sleep la-
boratory, our participants suffer disproportionately from sleep 
disorders relative to the general population. Second, we iden-
tified few women with HIV, and no HIV+ participants of Asian 
or Middle Eastern descent, and this limits the external validity 
of our findings. Third, our HIV+ cohort of 43 participants is rela-
tively small, although as described above a large control cohort 
improves the statistical power. Fourth, to allow a causal inter-
pretation of our results, we imposed standard causal identifica-
tion assumptions (see Supplemental Material: Methods: Causal 
Inference Assumptions) [55]; violations of these assumptions 
would lead to biases in our results. Notably, there may be un-
measured confounders such as income and education, as well 
as trauma and post-traumatic stress disorder. To address this 
concern, we performed sensitivity analysis to estimate the effect 
an unmeasured confounder would need to have to explain away 
our findings. In Supplemental Material: Discussion, we discuss 
why, based on the E-value we calculated, and the prior literature, 
our results appear to be robust to unmeasured confounding. 
Additionally, we made informed assumptions about which clin-
ical covariates are confounders and which are mediators. A fifth 
limitations is that we represented clinical conditions in our data 
as present versus absent, without information about disease se-
verity. Six, HIV-specific data collection through chart review has 
limitations: the actual time of HIV infection and ART initiation 
is often unknown or undocumented in medical records, as is the 
case in our study. We considered AIDS history the best indicator 
of HIV immunosuppression [56], which was reasonably apparent 
in notes. Seventh, since we did not conduct our own HIV testing 
of participants, it is possible that some controls may have HIV; 
however, we expect that <1% of controls could be living with 
undiagnosed HIV and this would not significantly affect our 
findings. Eighth, our brain age algorithm also has limitations, 
discussed in [20]. Finally, this was a single-site study.

As a future step, tracking and predicting future cognitive de-
cline among HIV+ participants is of particular clinical import-
ance. Further research is needed to establish whether sleep 
EEG can be useful to track the progress of HIV+ individuals, and 
specifically their risk of cognitive decline. Based on our prelim-
inary mediation findings, a prospective clinical study may be 
warranted to determine whether intervention on comorbidities 
mitigate risk of cognitive decline in PLWH. A sufficiently powered 
mediation analysis could help establish if interventions such as 
cardiac risk reduction and obstructive sleep apnea screening 
are likely to benefit adults with HIV specifically with respect to 
brain aging. Such a study would also allow one to better take 
into account potential confounders. In addition to documenting 
information such as education and socioeconomic background, 
one could assess for post-traumatic stress disorder and conduct 
urine drug screening for active drug use.

In conclusion, we studied brain aging in PLWH using over-
night sleep EEG recordings, and provided evidence that adults 
with HIV on ART experience advanced brain aging. PLWH have 
reduced slow wave power during non-REM sleep, an EEG fea-
ture implicated in cognitive decline among people without HIV 
infection. Our results suggest that sleep EEG is a potentially 

useful biomarker for HIV-associated brain aging, and provides 
preliminary evidence of the specific sleep EEG features that are 
altered in the setting of treated HIV infection. These results 
should be replicated in a more representative sample of the 
population. Further work is needed to establish the effects of 
comorbidities on brain aging in HIV, and to what extent treating 
these co-morbidities can mitigate accelerated brain aging.
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Funding
H.S.  and M.L.  were supported by a Developmental Award from 
the Harvard University Center for AIDS Research (HU CFAR NIH/
NIAID fund 5P30AI060354-16). M.B.W. was supported by the Glenn 
Foundation for Medical Research and the American Federation 
for Aging Research through a Breakthroughs in Gerontology 
Grant; through the American Academy of Sleep Medicine 
through an AASM Foundation Strategic Research Award; from 
the Department of Defense through a subcontract from Moberg 
ICU Solutions, Inc, and by grants from the NIH (1R01NS102190, 
1R01NS102574, 1R01NS107291, 1RF1AG064312). S.M.  was sup-
ported by the NIH (K23MH115812-03) and Harvard University 
Center for AIDS Research (HU CFAR NIH/NIAID fund 5P30AI060354-
16). L.L. was supported by Shanghai Pujiang Program Research 
grant (20PJ1408900), Shanghai Municipal Science and Technology 
Major Project (2021SHZDZX0102) and Major Program of National 
Natural Science Foundation of China (12090024).

Conflict of interest statement
Financial disclosure: None.

Nonfinancial disclosure: None.

References
 1. Triant  VA. HIV infection and coronary heart dis-

ease: an intersection of epidemics. J Infect Dis. 
2012;205(suppl_3):S355–S361.

 2. Losina E, et al. Projecting 10-year, 20-year, and lifetime risks 
of cardiovascular disease in persons living with human im-
munodeficiency virus in the United States. Clin Infect Dis. 
2017;65(8):1266–1271.

 3. Feinstein MJ, et al. Mortality following myocardial infarction 
among HIV-infected persons: the Center for AIDS Research 
Network Of Integrated Clinical Systems (CNICS). BMC Med. 
2019;17(1):149.

 4. Mulligan  K, et  al. Mixed patterns of changes in central 
and peripheral fat following initiation of antiretroviral 
therapy in a randomized trial. J Acquir Immune Defic Syndr. 
2006;41(5):590–597.

 5. Gandhi  RT, et  al. Metabolic and cardiovascular complica-
tions in HIV-infected patients: new challenges for a new 
age. J Infect Dis. 2012;205(suppl_3):S353–S354.

 6. Kooij KW, et al. HIV infection is independently associated 
with frailty in middle-aged HIV type 1-infected individ-
uals compared with similar but uninfected controls. AIDS. 
2016;30(2):241–250.

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/44/8/zsab058/6204183 by guest on 16 February 2023



8 | SLEEPJ, 2021, Vol. 44, No. 8

 7. De Francesco D, et al. Depression, lifestyle factors and cog-
nitive function in people living with HIV and comparable 
HIV-negative controls. HIV Med. 2019;20(4):274–285.

 8. Métral  M, et  al. The Neurocognitive Assessment in the 
Metabolic and Aging Cohort (NAMACO) study: baseline par-
ticipant profile. HIV Med. 2020;21(1):30–42.

 9. Cysique  LA, et  al. HIV, vascular and aging injuries in the 
brain of clinically stable HIV-infected adults: a (1)H MRS 
study. PLoS One. 2013;8(4):e61738.

 10. Cole JH, et al. Increased brain-predicted aging in treated HIV 
disease. Neurology. 2017;88(14):1349–1357.

 11. Ohayon  MM, et  al. Meta-analysis of quantitative sleep 
parameters from childhood to old age in healthy individ-
uals: developing normative sleep values across the human 
lifespan. Sleep. 2004;27(7):1255–1273.

 12. Luca G, et al. Age and gender variations of sleep in subjects 
without sleep disorders. Ann Med. 2015;47(6):482–491.

 13. Gorgoni  M, et  al. Sleep electroencephalography and brain 
maturation: developmental trajectories and the relation 
with cognitive functioning. Sleep Med. 2020;66:33–50.

 14. Léger D, et al. Slow-wave sleep: from the cell to the clinic. 
Sleep Med Rev. 2018;41:113–132.

 15. Ferini-Strambi  L, et  al. Slow wave sleep and cyclic alter-
nating pattern (CAP) in HIV-infected asymptomatic men. 
Sleep. 1995;18(6):446–450. 

 16. Terstegge K, et al. Spectral power and coherence analysis of 
sleep EEG in AIDS patients: decrease in interhemispheric 
coherence. Sleep. 1993;16(2):137–145.

 17. Wiegand  M, et  al. Nocturnal sleep EEG in patients with 
HIV infection. Eur Arch Psychiatry Clin Neurosci. 1991; 
240(3):153–158.

 18. Low  Y, et  al. Comparison of polysomnographic data in 
age-, sex- and axis I  psychiatric diagnosis matched HIV-
seropositive and HIV-seronegative insomnia patients. Clin 
Neurophysiol. 2012;123(12):2402–2405.

 19. Gamaldo CE, et al. Sleep, function and HIV: a multi-method 
assessment. AIDS Behav. 2013;17(8):2808–2815.

 20. Sun  H, et  al. Brain age from the electroencephalogram of 
sleep. Neurobiol Aging. 2019;74:112–120.

 21. Paixao L, et al. Excess brain age in the sleep electroenceph-
alogram predicts reduced life expectancy. Neurobiol Aging. 
2020;88:150–155.

 22. Ye  E, et  al. Association of sleep electroencephalography-
based brain age index with dementia. JAMA Netw Open. 
2020;3(9):e2017357.

 23. Myllymaa  S, et  al. Assessment of the suitability of 
using a forehead EEG electrode set and chin EMG elec-
trodes for sleep staging in polysomnography. J Sleep Res. 
2016;25(6):636–645.

 24. Younes  M, et  al. Accuracy of automatic polysomnography 
scoring using frontal electrodes. J Clin Sleep Med. 
2016;12(05):735–746.

 25. Younes  M, et  al. Performance of a new portable wireless 
sleep monitor. J Clin Sleep Med. 2017;13(2):245–258.

 26. Antoniou T, et al. Validation of case-finding algorithms de-
rived from administrative data for identifying adults living 
with human immunodeficiency virus infection. PLoS One. 
2011;6(6):e21748.

 27. Gallego  L, et  al. Analyzing sleep abnormalities in HIV-
infected patients treated with Efavirenz. Clin Infect Dis. 
2004;38(3):430–432.

 28. Clifford DB, et al. Impact of efavirenz on neuropsychological 
performance and symptoms in HIV-infected individuals. 
Ann Intern Med. 2005;143(10):714–721.

 29. Fettiplace  A, et  al. Psychiatric symptoms in patients 
receiving dolutegravir. J Acquir Immune Defic Syndr. 
2017;74(4):423–431.

 30. Yu S, et al. Enabling phenotypic big data with PheNorm. J 
Am Med Inform Assoc. 2018;25(1):54–60.

 31. Benjamini  Y, et  al. Controlling the false discovery rate: a 
practical and powerful approach to multiple testing. J R Stat 
Soc. 1995;57(1):289–300.

 32. VanderWeele  TJ, et  al. Sensitivity analysis in observa-
tional research: introducing the e-value. Ann Intern Med. 
2017;167(4):268–274.

 33. De Francesco D, et al. Do people living with HIV experience 
greater age advancement than their HIV-negative counter-
parts? AIDS. 2019;33(2):259–268.

 34. Payne BA, et al. Mitochondrial aging is accelerated by anti-
retroviral therapy through the clonal expansion of mtDNA 
mutations. Nat Genet. 2011;43(8):806–810.

 35. Var  SR, et  al. Mitochondrial injury and cognitive func-
tion in HIV infection and methamphetamine use. AIDS. 
2016;30(6):839–848.

 36. Papagno L, et al. Immune activation and CD8+ T-cell differ-
entiation towards senescence in HIV-1 infection. PLoS Biol. 
2004;2(2):E20.

 37. Gross  AM, et  al. Methylome-wide analysis of chronic 
HIV infection reveals five-year increase in biological 
age and epigenetic targeting of HLA. Mol Cell. 2016;62(2): 
157–168.

 38. Srinivasa S, et al. Soluble CD163 is associated with short-
ened telomere length in HIV-infected patients. J Acquir 
Immune Defic Syndr. 2014;67(4):414–418.

 39. Zanet DL, et al. Association between short leukocyte telo-
mere length and HIV infection in a cohort study: no evi-
dence of a relationship with antiretroviral therapy. Clin 
Infect Dis. 2014;58(9):1322–1332.

 40. Sico  JJ, et  al. HIV status and the risk of ischemic stroke 
among men. Neurology. 2015;84(19):1933–1940.

 41. Chow FC, et al. Elevated ischemic stroke risk among women 
living with HIV infection. AIDS. 2018;32(1):59–67.

 42. Lyons JL, et al. Plasma sCD14 is a biomarker associated with 
impaired neurocognitive test performance in attention and 
learning domains in HIV infection. J Acquir Immune Defic 
Syndr. 2011;57(5):371–379.

 43. Guha  D, et  al. Proteomic analysis of cerebrospinal fluid 
extracellular vesicles reveals synaptic injury, inflammation, 
and stress response markers in HIV patients with cognitive 
impairment. J Neuroinflammation. 2019;16(1):254.

 44. Chai  Q, et  al. HIV-1 counteracts an innate restriction by 
amyloid precursor protein resulting in neurodegeneration. 
Nat Commun. 2017;8(1):1522.

 45. Solomon  IH, et  al. Brain and liver pathology, amyloid de-
position, and interferon responses among older HIV-
positive patients in the late HAART era. BMC Infect Dis. 
2017;17(1):151.

 46. Zeinolabediny  Y, et  al. HIV-1 matrix protein p17 
misfolding forms toxic amyloidogenic assemblies 
that induce neurocognitive disorders. Sci Rep. 2017; 
7(1):10313.

 47. Spudich  S, et  al. HIV persistence in the central nervous 
system during antiretroviral therapy: evidence and impli-
cations. AIDS. 2019;33:S103–S106.

 48. Mdodo R, et al. Cigarette smoking prevalence among adults 
with HIV compared with the general adult population in 
the United States: cross-sectional surveys. Ann Intern Med. 
2015;162(5):335–344.

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/44/8/zsab058/6204183 by guest on 16 February 2023



Leone et al. | 9

 49. Hablitz  LM, et  al. Increased glymphatic influx is cor-
related with high EEG delta power and low heart 
rate in mice under anesthesia. Sci Adv. 2019;5(2): 
eaav5447.

 50. Xie L, et al. Sleep drives metabolite clearance from the adult 
brain. Science. 2013;342(6156):373–377.

 51. Marshall  L, et  al. Boosting slow oscillations during 
sleep potentiates memory. Nature. 2006;444(7119): 
610–613.

 52. Diekelmann S, et al. The memory function of sleep. Nat Rev 
Neurosci. 2010;11(2):114–126.

 53. Fultz NE, et al. Coupled electrophysiological, hemodynamic, 
and cerebrospinal fluid oscillations in human sleep. Science. 
2019;366(6465):628–631.

 54. Irwin  MR, et  al. Implications of sleep disturbance and in-
flammation for Alzheimer’s disease dementia. Lancet 
Neurol. 2019;18(3):296–306.

 55. Hernan  M, et  al. Causal Inference: What If. Boca Raton, FL: 
Chapman & Hall/CRC; 2020.

 56. Maldarelli  F, et  al. ART suppresses plasma HIV-1 RNA to 
a stable set point predicted by pretherapy viremia. PLoS 
Pathog. 2007;3(4):e46.

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/44/8/zsab058/6204183 by guest on 16 February 2023


