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Abstract

Study Objectives:  Age-related comorbidities and immune activation raise concern for advanced brain aging in people living 
with HIV (PLWH). The brain age index (BAI) is a machine learning model that quanti�es deviations in brain activity during 
sleep relative to healthy individuals of the same age. High BAI was previously found to be associated with neurological, 
psychiatric, cardiometabolic diseases, and reduced life expectancy among people without HIV. Here, we estimated the effect 
of HIV infection on BAI by comparing PLWH and HIV� controls.
Methods:  Clinical data and sleep EEGs from 43 PLWH on antiretroviral therapy (HIV+) and 3,155 controls (HIV�) were 
collected from Massachusetts General Hospital. The effect of HIV infection on BAI, and on individual EEG features, was 
estimated using causal inference.
Results:  The average effect of HIV on BAI was estimated to be +3.35�years (p�<�0.01, 95% CI�=�[0.67, 5.92]) using doubly robust 
estimation. Compared to HIV� controls, HIV+ participants exhibited a reduction in delta band power during deep sleep and 
rapid eye movement sleep.
Conclusion:  We provide causal evidence that HIV contributes to advanced brain aging re�ected in sleep EEG. A�better 
understanding is greatly needed of potential therapeutic targets to mitigate the effect of HIV on brain health, potentially 
including sleep disorders and cardiovascular disease
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Statement of Signi�cance

There is concern that HIV causes advanced brain aging despite antiretroviral therapy, and biomarkers are greatly needed 
to identify this effect in people living with HIV (PLWH). Using a machine learning model of brain aging based on sleep 
EEG, we found that HIV increases brain age after adjusting for potential confounders. We also found that slow waves were 
markedly attenuated during deep sleep among PLWH. Our study shows that sleep EEG can be used to measure brain age 
in PLWH, which can serve as an inexpensive and easily deployable biomarker.
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Introduction
People living with HIV (PLWH) in the current antiretro-
viral therapy (ART) era are at increased risk for age-related 
comorbidities including cardiovascular diseases [1�3], meta-
bolic disorders [4, 5], osteoporosis, frailty [6], and HIV-associated 
neurocognitive disorders (HAND) [7, 8]. Recent studies based on 
magnetic resonance imaging (MRI) show that brains of PLWH 
have structural changes characteristic of older individuals [9, 
10], suggesting advanced brain�aging.

One critical factor not addressed in the current ART era is 
the relationship between brain aging and sleep. Sleep changes 
predictably with age [11�13]. For example, slow wave activity 
(SWA, EEG oscillations of <4 Hz) during deep sleep is known to 
attenuate gradually beyond puberty [14]. Notably, reductions 
in SWA are also seen in disease states such as alcohol use dis-
order, insomnia, and dementia. Descriptions prior to effective 
ART described HIV-mediated changes in slow wave power during 
non-REM sleep early during infection [15], and later on dimin-
ished sleep spindles [16] and increased sleep fragmentation [17]. 
Recent studies show high rates of insomnia and other sleep dis-
turbances [18, 19], but more comprehensive analyses are�needed.

We previously developed a machine learning algorithm that 
predicts sleep-EEG-based brain age using a dataset of 2,532 
healthy HIV� participants [20]. Our prior work showed that 
neuropsychiatric diseases, hypertension, and diabetes are as-
sociated with increased brain age [20], and excess brain age 
predicts higher mortality [21]. Recently we showed that brain 
age monotonically increases from cases of non-dementia to 
mild cognitive impairment to dementia [22]. Due to advances 
in home-based EEG, sleep EEGs are inexpensive, participant-
friendly [20], and more accessible for use in low�middle-income 
countries [23�25]. Here, we investigate the impact of HIV on 
brain aging measured by the brain age index (BAI), the difference 
between brain-predicted age and chronological age. We �rst es-
timated the effect of HIV infection on BAI. Then we estimated 
the effect on individual sleep EEG features in HIV+ compared 
to HIV� controls. In preliminary analysis, we additionally found 
that cardiovascular and sleep-related diseases may potentially 
mediate the effects of HIV on BAI. Overall, sleep EEG is found to 
be a potential new biomarker of brain aging in PLWH.

Methods
Standard protocol approvals, registrations, and 
patient consents

The study was conducted under a protocol approved by the Partners 
Institutional Review Board, with waiver of written consent.

HIV+ and HIV��cohorts

We conducted a retrospective cohort study at Massachusetts 
General Hospital. Using the Partners Research Patient Data 
Registry (RPDR), a large database of historical electronic health 
records, we retrospectively searched for HIV+ patients (Figure 1). 
We identi�ed all patients who had undergone a full night diag-
nostic sleep study between 2008 and 2018, who had received an 
International Classi�cation of Diseases, Ninth or Tenth Revision, 
Clinical Modi�cation (ICD-9-CM or ICD-10-CM, respectively) 
billing code of B20 (ICD-10) or 042 (ICD-9), which indicates HIV 
infection. HIV billing codes are highly sensitive for patients with 
a diagnosis of HIV [26]; however, there are cases where an HIV 
billing code is assigned for other reasons such HIV testing, even 
if the test is negative. Therefore, for each of these patients, we 
performed manual chart review to con�rm HIV infection and 
that the HIV diagnosis occurred before the date of the sleep 
study. HIV is the exposure of interest in this study. HIV� controls 
were drawn from the Massachusetts General Hospital sleep lab 
dataset described in [20] that had the same sleep study type as 
the HIV+ participants (full-night, diagnostic studies). No HIV+ 
participants were of Asian or Middle Eastern descent, so we ex-
cluded controls of those racial and ethnic backgrounds.

Sleep EEG-based brain age: outcomes

We used the same preprocessing and brain age computation 
used in [20]. Sleep EEG features from six channels (F3-M2, F4-M1, 
C3-M2, C4-M1, O1-M2, O2-M1) were computed and averaged 
across all 30-s epochs according to sleep stage (Wake, REM, N1, 
N2, N3). We log-transformed and standardized (z-score) the fea-
tures before using them as inputs to the brain age prediction 
model. There were 480 features, 96 for each of the �ve sleep 
stages. See [20] for details on all features. Sleep EEG frequency 
bands which a portion of the features were based on are de�ned 
as follows: delta band (�, 1�4 Hz), theta band (�, 4�8 Hz), alpha 
band (�, 8�12 Hz), and spindle or sigma band (�, 11�15 Hz). For 
each participant, the model outputs a brain age (BA), which was 
compared to chronological age (CA) to obtain the BAI: BAI�=�BA 
� CA. We treated BAI as the primary outcome of interest. The 
log-normalized, unstandardized version of each individual EEG 
feature was treated as a secondary outcome of interest.

Clinical data acquisition: HIV-related

We performed manual chart review to determine AIDS history, 
viral load, ART adherence and HIV medication history, as well 
as a history of secondary brain infection, a brain tumor, or HIV 

Figure 1.  Flowchart of HIV+ participants inclusion and exclusion. N is the number of HIV+ participants eligible following each evaluation step.�43 HIV+ participants 
with diagnostic studies of suf�cient quality were ultimately selected for analysis. CPAP, continuous positive airway pressure.
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encephalitis. AIDS was de�ned as a documented CD4 count below 
200, or con�rmation of AIDS or an opportunistic infection pre-
ceding the sleep study in a physician�s medical note. We found 
the viral load measure nearest to the sleep study within 1�year to 
determine viral suppression near sleep testing. Viral loads labeled 
as undetected or below 200 copies/mL were considered undetect-
able in this study. Adherence to ART was determined by evi-
dence of continuously prescribed medications and maintenance 
of CD4+ cell levels. We gathered data on efavirenz, a commonly 
prescribed non-nucleoside reverse transcriptase inhibitor, due to 
its known neuropsychiatric effects and effects on sleep [27, 28]. 
Additionally, we gathered usage of integrase strand transfer in-
hibitors (INSTIs; dolutegravir, raltegravir, bictegravir, elvitegravir), 
because of their potential neuropsychiatric effects [29].

Clinical data acquisition: covariates

We gathered the following covariates (collectively denoted as 
C): age, sex (male/female), race (Black/Hispanic/White/Other), 
and history of tobacco use disorder or alcohol use disorder. 
Substance use disorder was not included among covariates 
because we determined that this categorization was too am-
biguous and potentially unreliable, as discussed in more detail 
in Supplementary Material: Results. The other covariates men-
tioned above were treated as potential confounders; that is, they 
could affect both the prevalence of the exposure, HIV, and the 
primary outcome, BAI, or the secondary outcomes, the features 
used to compute BAI. We used Phenorm [30] to reduce the risk of 
bias in gathering data. Phenorm is a validated machine learning 
tool to infer the presence of medical conditions based on auto-
mated analysis of clinical notes and ICD�codes.

We collected data on additional covariates which we deter-
mined were unlikely to act as confounders, but rather could be 
in�uenced by HIV infection and act as mediators of HIV�s ef-
fects on brain aging. These include co-morbidities that are 
more common in the setting of HIV and may affect brain health 
(presence determined by Phenorm). We also treated multiple 
categories of medications that can affect sleep as potential me-
diators because HIV can potentially increase the risk of neuro-
psychiatric disorders and the need to be treated with these 
medications. All data and results of mediation analysis are pre-
sented in the Supplemental Material.

Causal inference analysis

The total effect (TE) of HIV infection on BAI is the difference in 
average BAI between HIV+ and HIV� participants after adjusting 
for potential confounders. The TE can be estimated via a ran-
domized controlled trial, or in cases where such a trial is not 
possible, by adjusting for confounding computationally. We 
therefore estimated TE from retrospective observational data 
through the potential outcome framework. In this framework, 
two potential outcomes are estimated for each participant 
through statistical modeling: the potential BAIs if assigned 
either to the HIV+ group or to the HIV� group. Each potential 
outcome is then averaged across the participants. The TE is the 
difference between the sample-averaged BAI in the HIV+ assign-
ment group and the sample-averaged BAI in the HIV� assign-
ment group. Although we show these sample-averaged potential 
outcomes, the TE is of greatest interest. Note that the TE is also 
referred to as the Average Causal Effect (ACE). See Supplemental 

Material: Methods: Causal Inference Assumptions for the pre-
cise de�nition of the ACE/TE and for details on assumptions 
made in causal statistical inference.

We used doubly robust estimation (DRE) to estimate the TE 
due to its robustness against model misspeci�cation bias. DRE 
requires �tting two models: (1) the outcome model, a model 
of how HIV status and covariates predict BAI and (2) the pro-
pensity model, a model of how covariates in�uence HIV status. 
We �t these models with nested �vefold cross validation. See 
Supplemental Material: Methods: Doubly Robust Estimation for 
more details on DRE, and Supplemental Material: Methods: Cross-
Validation for further details on the cross-validation procedure. 
We also performed matching as an additional nonparametric 
analysis to estimate the TE of HIV on BAI. Methods and results 
are described in the Supplemental Material.

Statistical analysis

In comparison of BAI between the HIV+ and HIV� cohorts, we cal-
culated a p-value using the two-sided student�s t-test. For the out-
comes in analyses (BAI and BAI features), we calculated p-values, 
the standard error of the mean (SEM), and 95% con�dence inter-
vals. For p-values, we report the actual value, except where 
p�<�0.01. For other continuous variables, p-values are calculated 
via the rank-sum test, and for categorical variables, by the chi-
squared test. To adjust for multiple comparisons when evaluating 
the statistical signi�cance of BAI features, we determined the ap-
propriate signi�cance threshold for a maximum false discovery 
rate (FDR) of 0.1 [31]. We estimated con�dence intervals using 
bootstrapping, repeatedly sampling with replacement such that 
each bootstrapped sample size was equal to the sample size of 
the original dataset. For each bootstrapped dataset, the TE of 
HIV infection on BAI was estimated. We performed bootstrap 
resampling 1,000 times. We obtained 95% con�dence interval 
from the 2.5% and 97.5% percentiles of the bootstrap distribution.

Sensitivity analysis

We performed sensitivity analysis using the E-value, de-
�ned as the minimum effect that an unmeasured confounder 
would need to have with both the prevalence of HIV infection 
and BAI to reverse our �ndings [32]. E-value is computed as 
� � ���

�
�� ���-��, where RR is the risk ratio of the effect of 

HIV on BAI. Since BAI is a continuous outcome, we assume it 
follows a Gaussian distribution with mean from the causal in-
ference and standard deviation from bootstrapping and com-
pute the cumulative probability of BAI greater than 0.�Therefore, 
RR� =� P(BAI>0 | HIV+ among all participants) / P(BAI>0 | HIV� 
among all participants).

Data availability statement

De-identi�ed, derived data supporting the �ndings of this study 
are available from the corresponding author on request.

Results
BAI and covariates characteristics in HIV+ and HIV�

We identi�ed 3,155 HIV� control patients, and 43 HIV+ patients 
(Figure 1) with comparable diagnostic sleep studies. Among 
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HIV+ compared to HIV� patients (Table 1), there were more men 
(79% HIV+ vs. 51% HIV�, p�<�0.01), greater percentages of indi-
viduals with tobacco use (46% vs. 21%, p�<�0.01) and alcohol use 
(37% vs. 8%, p�<�0.01). Age (50 vs. 49�years old, p�=�0.77) and the 
proportion of white patients between HIV+ and HIV� cohorts 
(79% vs. 70%, p�=�0.16) were similar. Of 41 HIV+ participants with 
viral load data available, 38 had suppressed viral loads at the 
time of the sleep study. There were no cases of past secondary 
brain infection or a brain tumor, and one case of HIV encephal-
itis thought to be due to immune reconstitution in�ammatory 
syndrome (neuro-IRIS), from which the patient recovered. Their 
BAI was �2.50. A�total of 9 (44%) HIV+ participants had a history 
of AIDS. Four participants were prescribed efavirenz. A�total of 
13 were prescribed an integrase strand transfer inhibitor (INSTI) 
at the time of their sleep study. We compared the distribution 
of BAIs of the INSTI group versus the group that was not on 
INSTIs. The average BAI of the INSTI group was 1.33 while the 
average BAI of the non-INSTI group was 7.34 (Mann�Whitney 
U-test, p� =� 0.017). All HIV+ participants were determined by 
chart review (M.L., C.B., G.R.) to be adhering to ART at the time 
of the sleep�study.

HIV� participants had a mean BAI of �0.18�years (SD�=�10.24) 
and 1,540/3,155 (49%) of participants had a positive BAI, ie. a 
brain age predicted to be higher than chronological age (Figure 2).  
In contrast, HIV+ participants had a mean BAI of 4.4� years 
(SD�=�8.77), with 28/43 (65%) of participants having a positive BAI. 
In sub-analyses restricted to the HIV+ cohort, we did not �nd a 
signi�cant association of BAI with AIDS history (Supplementary 
Figure S1).

HIV increases BAI after adjusting for confounders

To estimate the TE of HIV infection on BAI, we de�ned a causal 
diagram (Figure 3, A) based on our clinical knowledge depicting 
the potential relationships among BAI, HIV, and the set of poten-
tial confounders C: age, sex, race, tobacco use disorder, and al-
cohol use disorder. Using this model, we computed the average 
potential outcome difference of BAI between HIV� versus HIV+ 
participants. Average BAI for the HIV� group was estimated 
to be �0.16�years (SEM�=�0.18�years), while average BAI for the 
HIV+ group was estimated to be 3.19�years (SEM�=�1.43�years). 
TE, which is the difference in the average potential outcomes 
of BAI between HIV statuses, was therefore 3.35�years (p�<�0.01, 
95% CI�=�[0.67, 5.92]) (Figure 3, B). We found a similar and stat-
istically signi�cant effect using matching which we report in 
Supplementary Table S1, Supplementary Figure S2. With both 
methods, BAI was signi�cantly elevated in the setting of HIV 
infection.

Table 1.  Dataset demographics, potential mediators, and HIV-related 
variables

HIV+ HIV� p-value

Number 43 3,155  
Demographics (n, %)
Age (median, IQR) 49 (46, 54) 50 (38, 62) 0.77
Male (n, %) 34 (79%) 1,594 (51%) < 0.01
White (n, %) 30 (70%) 2,481 (79%) 0.16
Tobacco use disorder 20 (46%) 686 (21%) < 0.01
Alcoholism 16 (37%) 267 (8%) < 0.01
HIV-related (n, %)
AIDS history 19 (44%) NA  
Virally suppressed at  

sleep study
38/41 (93%)   

INSTIs taken at sleep study 13 (30%) NA  
Efavirenz taken at sleep study 4 (9%) NA  

Figure 2.  Brain ages among HIV+ and HIV� participants. Scatter plot showing 
each participant�s Chronological Age (CA), the age at the time of the sleep study, 
versus the Brain Age (BA), the sleep EEG-predicted age. The solid line represents 
BA�=�CA, or BAI�=�0. Above and below the line are indicated as the BAI > 0 and BAI 
< 0 regions, respectively.

Figure 3.  BAI is elevated by HIV after adjusting for potential confounders. (A) 
Causal diagram of the variables. An arrow from a variable X to another variable 
Y indicates our assumption that X causally affects Y.�C is the set of covariates. 
HIV represents the presence or absence of the exposure to HIV infection. BAI 
represents the outcome variable, the BAI. The red arrow represents the effect 
of interest, which is measured as the difference in the expected potential out-
comes of BAI in the presence and absence of HIV. (B). Bar chart showing the 
expected potential outcome of BAI in the absence (HIV�) and presence (HIV+) 
of HIV. Error bars depict the standard error of the mean (SEM; HIV��=�0.18�years, 
HIV+�=�1.43�years). The difference in expected potential outcomes of BAI is sig-
ni�cant (p�<�0.05), indicated by asterisks.

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/44/8/zsab058/6204183 by guest on 16 February 2023



Leone et�al.  |  5

Sensitivity analysis for unmeasured confounding

The risk ratio (RR), de�ned as P(BAI>0 | HIV+ among all par-
ticipants) / P(BAI>0 | HIV� among all participants) was 2.3. 
Therefore, sensitivity analysis yielded an E-value of 4.0, which 
means, to explain away the effect of HIV on BAI, an unmeasured 
confounder should have at least a risk ratio of 4.0 for both HIV 
infection and BAI.

EEG features underlying BAI are altered by�HIV

We also estimated the effect of HIV on the speci�c EEG features 
used to compute BAI. In the causal diagram (Figure 3, A), for each 
analysis we performed the same method of estimating the TE, 
but replaced the primary outcome BAI with an individual sleep 
EEG feature as a secondary outcome. With a pre-determined 
maximum FDR of 0.1, we identi�ed 34 EEG features statistically 
signi�cantly altered by HIV infection (Figure 4). There were no 

statistically signi�cant changes in features in the Wake state 
(Supplementary Figure S3). In REM, three features were altered 
by HIV, each associated with reduced delta band power (Figure 
4, A and B). In stage N1 (Figure 4, C and D), �ve signi�cant fea-
ture changes were identi�ed, all re�ecting increased line length 
(a measure of signal complexity). In Stage N2 (Figure 4, E and 
F), there were 10 signi�cant feature changes; 9 were related to 
reduction in delta power, and 1 to an increase in the theta-to-
alpha power ratio. In stage N3 (Figure 4, G and H), there were 12 
signi�cant features, all corresponding to a relative reduction in 
HIV of delta band�power.

Representative sleep spectrograms and hypnograms of 
HIV+ and HIV� participants are shown in Figure 5. Compared 
to that of the HIV� participant, the spectrogram of the HIV+ 
participant visibly re�ects low-frequency delta power (1�4 Hz) 
markedly reduced throughout the night, most notably during 
N2�sleep.

Figure 4.  Individual EEG features underlying brain age are altered by HIV. Rows show features by sleep stage: (A, B) REM. (C, D) N1. (E, F) N2. (G, H) N3. (A,C,E,G) Volcano 
plots of signi�cance level of changes in potential outcome of BAI features versus log2 fold change. Dotted lines represent the signi�cance threshold for a FDR of 0.1. 
(B, D, F, H) Bar charts comparing potential outcomes of speci�c BAI features in the presence (HIV+) and absence (HIV�) of HIV. Only the signi�cant features are shown. 
Solid horizontal black lines show SEM.
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