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The human electroencephalogram (EEG) of sleep undergoes profound changes with age. These changes
can be conceptualized as “brain age (BA),” which can be compared to chronological age to reflect the
degree of deviation from normal aging. Here, we develop an interpretable machine learning model to
predict BA based on 2 large sleep EEG data sets: the Massachusetts General Hospital (MGH) sleep lab
data set (N = 2532; ages 18—80); and the Sleep Heart Health Study (SHHS, N = 1974; ages 40—80). The
model obtains a mean absolute deviation of 7.6 years between BA and chronological age (CA) in healthy

gg ;’r‘:o:g: participants in the MGH data set. As validation, a subset of SHHS containing longitudinal EEGs 5.2 years
Sleep apart shows an average of 5.4 years increase in BA. Participants with significant neurological or psy-

EEG chiatric disease exhibit a mean excess BA, or “brain age index” (BAI = BA-CA) of 4 years relative to

Machine learning healthy controls. Participants with hypertension and diabetes have a mean excess BA of 3.5 years. The

findings raise the prospect of using the sleep EEG as a potential biomarker for healthy brain aging.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Human sleep undergoes robust and predictable changes with
age, reflected in both overall sleep architecture and electroen-
cephalogram (EEG) oscillations/waveforms. At the level of sleep
architecture (macrostructure), older participants sleep earlier and
wake earlier, have shorter sleep duration, increased sleep frag-
mentation, and reduced percentages of rapid eye movement sleep,
as well as (at least in males) deep non-rapid eye movement sleep
(Mander et al.,, 2017; Scullin, 2017). At the level of EEG micro-
structure, older participants exhibit reduced slow waves during
deep sleep (Carrier et al., 2001; Larsen et al., 1995); decreased sleep
spindle amplitude, density, and duration (Purcell et al., 2017); and
less phase coupling between slow oscillations and sleep spindles
(Helfrich et al., 2017). However, no study has yet addressed the
inverse problem: how accurately can a person’s age be predicted
from the sleep EEG? What factors make a person’s “BA” older or
younger than their chronological age (CA)?
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BA serves as a potential aging biomarker where the variation of BA
between individuals of the same chronological age may carry impor-
tant information about the risk of cognitive impairment, neurological
or psychiatric disease, or death. Various biomarkers of aging have been
proposed to better predict lifespan and functional capability, ranging
from molecular and cellular levels to structural level biomarkers. At
the molecular and cellular level, aging-related biomarkers include
leukocyte telomere length (Kruk et al., 1995), Ink4/Arf locus expression
(Krishnamurthy et al., 2004), N-glycan profile (Vanhooren et al., 2010),
mitochondrial DNA deletions (Eshaghian et al., 2006), and DNA-
methylation status at CpG sites across the genome (Petkovich et al.,
2017) among others. At the structural level, brain anatomy changes
dramatically throughout life (Raz and Rodrigue, 2006). For example,
cortical volume (Cole et al., 2017), thalamic volume (Redline et al.,
2004), and white matter integrity (Mander et al., 2017), each de-
creases with aging. Using magnetic resonance images (MRI), chrono-
logical age can be predicted with mean absolute deviation (MAD) of
5 years in healthy participants (Franke et al., 2010). Various diseases,
including Alzheimer’s disease, schizophrenia, epilepsy, traumatic
brain injury, bipolar disorder, major depression, cognitive impairment,
diabetes mellitus, and HIV, are associated with excess BA, that is, older
MRI BA than chronological age (Cole, 2017; Cole et al., 2018; Cole and
Franke, 2017; Franke et al., 2010, 2012).
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Alongside these biomarkers, EEG-based BA is a complement
with several potential advantages: (1) EEG-based BA could reflect
functional changes rather than structural changes; (2) EEG is more
participant friendly, has less costs and contraindications, and in
principle could be measured by home-based devices; (3) EEG-based
BA could facilitate repeated within-participant measures to assess
the effectiveness of interventions, such as medications (Roehrs and
Roth, 2010) or brain stimulation (Tasali et al., 2008) that aim to
preserve and/or improve brain function and lifespan.

Here, we describe an EEG-based BA and “brain age index” (BAI),
that is, the difference between BA and chronological age, developed
using 2 large sleep EEG data sets: the Massachusetts General Hos-
pital (MGH) sleep lab data set (Biswal et al., 2017; Sun et al., 2017)
and the Sleep Heart Health Study (SHHS) (Dean et al., 2016; Quan
et al., 1997; Redline et al., 1998). We identify participants with
significant neurological or psychiatric disease in the MGH data set
and train the model only on EEGs from participants without these
diseases. The effects of different EEG electrode choices are also
investigated. The model is then validated on a longitudinal cohort
from a subset of the SHHS data set without neurological or car-
diovascular disease. We correlate the mean deviation of BA from
chronological age with clinical covariates and diseases. Finally, to
interpret the BAI, we derive a model-based age norm, which can be
compared to show how EEG features contribute to BAIL

2. Material and methods
2.1. Data set

The Partners Institutional Review Board approved retrospective
analysis of the deidentified polysomnogram (PSG) data set, ac-
quired in MGH between 2008 and 2012, without requiring addi-
tional consent for its use in this study. The EEG signals contain 6
channels: frontal (F3-M2 and F4-M1), central (C3-M2 and C4-M1),
and occipital (O1-M2 and 02-M1), each referenced to the contra-
lateral mastoid. EEG signals are sampled at 200 Hz. The signals are
segmented into nonoverlapping 30-second epochs. Each PSG is
scored by 1 of 7 EEG technicians according to the American Acad-
emy of Sleep Medicine (AASM) standards (AASM, 2007). Epochs are
scored as 1 of 5 stages: wake (W), rapid eye movement, Non-REM
stage 1 (N1), Non-REM stage 2 (N2), and Non-REM stage 3 (N3).
The inclusion criteria include participants (1) age between 18 to
80 years; (2) who underwent diagnostic PSG (not split night study);
and (3) with a clinical diagnosis available from 5 years before to 1
year after the PSG recording from the hospital database. To remove
the potentially confounding effect of imputing missing sleep stages,
we exclude EEGs with missing sleep stages and investigate their
effect on the BA in the supplementary material (Figure S1).

We define a participant as “having significant neurological or
psychiatric disease” if they have at least 1 neurological or psychi-
atric diagnosis in Table S1 (Supplementary Material) in the medical
record from 5 years before to 1 year after the PSG recording. This
definition is similar to those used in prior studies of MRI BA, for
example, Brain Images of Normal Participants (BRAINS) (Job et al.,
2017) and Open Access Series of Imaging Studies (OASIS) (Marcus
et al, 2010), (Steffener et al., 2016) and (Cole et al, 2015).
Although some evidence suggests sleep apnea may be a risk factor
for dementia, the relationship remains uncertain (Ding et al., 2016).
We therefore do not exclude participants with sleep apnea. How-
ever, we compare BAIs for participants without sleep apnea (apnea-
hypopnea index [AHI] < 5) versus those with moderate to severe
apnea (AHI > 15) using a t-test. We refer to participants without
significant neurological or psychiatric disease as “healthy.”

In total, we identify 2532 participants, 167 of whom have sig-
nificant neurological or psychiatric diseases. Table 1 provides

Table 1
MGH sleep data set summary
Characteristics Value
Number of EEGs 2532 (including 167 with

significant neurological or
psychiatric disease?)

Age (year), median (IQR) 50 (38—61)
Gender Female 1266 (50%), Male 1266 (50%)
BMI (kg/m?), median (IQR) 29 (25—34)
Overall AHI (per hour), 5(2-12)
median (IQR)
Normal (<5) 1232 (48.7%)

Mild sleep apnea (5 < AHI < 15)
Moderate sleep apnea

(15 < AHI < 30)
Severe sleep apnea (AHI > 30)

813 (32.1%)
373 (14.7%)

114 (4.5%)

Key: IQR, interquartile range; BMI, body mass index; AHI, apnea-hypopnea index (#
apnea events per hour of sleep) at 4% oxygen desaturation for hypopnea.
4 See Table S1 in the supplementary material.

summary statistics for the data set. Self-reported medication intake
collected at the time of PSG recording is reported in Supplemental
Table S2.

We also use a subset of the SHHS data set (Dean et al., 2016;
Quan et al., 1997; Redline et al., 1998), which contains repeated
EEGs from the same participant in two visits about 5 years apart,
making it possible to evaluate the longitudinal reliability of our
model at the population level. The participant inclusion criteria are
(1) having EEGs from both visits; (2) chronological age between 40
and 80 years at both visits (minimum age in SHHS is 40); (3) having
EEG and sleep stage scoring of high quality according to SHHS
specifications (Table S3); and (4) having no neurological or car-
diovascular disease (Table S3). We also exclude EEGs with missing
sleep stages. As a result, 987 EEGs from SHHS visit 1 and 987 paired
EEGs from visit 2 are used. The average difference in the chrono-
logical age between the 2 visits is 5.2 years. Unlike the MGH data
set, the SHHS data set uses 2 EEG channels (C3-M2 and C4-M1) and
is scored according to R&K standard (Rechtschaffen, 1968). To make
scoring consistent across data sets, we combine S3 and S4 in SHHS
to match the scoring of N3 in the MGH data. Summary statistics for
the SHHS data set are shown in Table 2.

2.2. EEG preprocessing and artifact removal

EEG signals are notch-filtered at 60 Hz to reduce line noise, and
bandpass filtered from 0.5 Hz to 20 Hz to reduce myogenic artifacts.
For 30s-epochs, those with absolute amplitude larger than 500 pV
are removed to minimize movement artifacts. Epochs containing
flat EEG for more than 2 seconds are also removed. We also exclude
EEGs contaminated by electrocardiogram, indicated by 1 Hz har-
monic in the EEG spectrogram. To reduce interparticipant variance,

Table 2
Sleep heart health study data set summary
Characteristics SHHS visit 1 SHHS visit 2
(SHHS1) (SHHS2)
Number of EEGs 987 987 (same participants as
SHHS1)
Age (year), 58 (53—66) 64 (58-71)
median (IQR)
Gender Female 609
(62%),
Male 378 (38%)
BMI (kg/m?), 27 (25-30) 28 (25-31)
median (IQR)
Overall AHI (per hour), 3(1-7) 5(2—11)
median (IQR)




114 H. Sun et al. / Neurobiology of Aging 74 (2019) 112—120

the amplitude of each EEG channel is normalized to have zero
median and unit interquartile range across the whole night. The
total amount of data removed by these preprocessing procedures is
7% in the MGH data set and 9% in the SHHS data set.

2.3. Feature extraction

For age prediction, we extract features from sleep EEG used in
sleep staging in our previous work (Sun et al., 2017). We extract 102
features from each 30-second epoch covering both time and fre-
quency domains, as summarized in Table S4. For each EEG
recording, we average the features in each of the 5 sleep stages over
time, yielding 102 x 5 = 510 features per EEG. The features are log-
transformed to render feature distributions approximately
Gaussian. Subsequently, these features are z-transformed to have
zero mean and unit standard deviation in the training set. The same
z-transformation is applied to the testing set.

2.4. Brain age prediction

The model minimizes an objective function J(w,b) with two
terms: (1) mean squared prediction error; and (2) magnitude of the
covariance between CA and BAI:

J(w,b) = BAI* + A|Cov(CA, BAI)

where BA; = softplus(w’x; + b) = In[1+ e"'*tb), that is, a linear
combination of EEG features followed by a softplus function to

N 2 N 2
> (BAW®/N = 5 (BA; = CA)?/N
1= 1=
squared prediction

ensure positivity of BA; BAI? =

is the mean error; and

Couv(CA,BAI) = %

i=1
correlation (covariance) between the chronological age CA; and
brain age index BAI;. Minimizing the first term BAI? encourages the
model to produce predictions BA that are accurate (close to CA).
Minimizing the second component Cov(CA,BAI) encourages de-
viations of BA from CA to be uncorrelated with CA. The second

(CA; — CA)(BAI; — BAI)| is the average absolute
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component is weighted by a hyperparameter A, which tradeoff
between the 2 components.

To determine the optimal hyperparameter A, we randomly select
300 EEGs from the training set to serve as internal validation data.
We perform grid search on A ranging from [0, 1, 5, 10]. We find the
hyperparameter with the highest performance on the internal
validation set. The performance metric for each hyperparameter is
evaluated using corr(CA,BA) — |corr(CA,BAI)|, where corr(-) denotes
Pearson’s correlation. A larger corr(CA,BA) and a smaller
|corr(CA, BAI)| indicate better model performance. Here, the metric
is correlation instead of covariance or prediction error because
correlation is normalized and comparable among different hyper-
parameter values. Once the optimal hyperparameter with the best
validation performance is determined, the validation set is com-
bined with the rest of the training set, and the model is retrained
using the optimal hyperparameter.

We maintain strict separation of training and testing partici-
pants to achieve statistically unbiased estimates of model’s per-
formance. The reported results are based on the testing set, unless
stated.

3. Results
3.1. EEG-based brain age prediction

The MGH data set (N = 2532) was partitioned into a healthy
training set (N = 1343) used to train the model, and a testing set
(N = 1189) to evaluate model performance. In the testing set, 167
had significant neurological or psychiatric disease (Table S1); the
remaining 1022 were healthy. A comparison between these 2
groups is presented in subsection “Correlation between Disease and
Brain Age Index”.

We first compared age prediction performance using the sleep
macrostructure features (Mander et al., 2017; Redline et al., 2004)
(30 features, Table S5) versus using the 510 sleep microstructure
EEG features, on the testing set. As shown in Fig. 1, the MAD of BA
from CA using macrostructure features was much higher
(23.3 years) than that using EEG features (7.8 years), and the cor-
relation was weaker (0.46, 95% CI 0.42—0.50) than that using EEG
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Fig. 1. Scatter plot of predicted BA versus CA using (A) sleep EEG macrostructure features (described in Table S5) and (B) sleep microstructure features (described in Table S4). The
red dashed diagonal line is the identity line where BA is equal to CA. Both plots are obtained from the same testing participants, including both healthy and with significant
neurological or psychiatric disease. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 2. Cases in which BA matches (diagonal) or is younger or older than CA (off diagonal). Each panel consists of a hypnogram and the corresponding spectrogram. Spectrograms
are calculated as the average across the 6 EEG channels. The horizontal axis is time in hours. The case indicated by * is described in the main text.

features (0.82, 95% CI 0.80—0.84). The results suggest that the ef-
fects of age on brain activity are more consistently reflected in sleep
EEG (microstructure) than in sleep stage composition (macro-
structure). The progression of EEG features with age is further
illustrated by a two-dimensional visualization of the feature space
in Figure S2.

In Fig. 2, we show spectrograms of sleep EEGs from 6 typical in-
dividuals, arranged as a “confusion matrix”, where rows show par-
ticipants with CA in young (18—30 years), intermediate
(40—50 years), and older groups (60—80 years) from top to bottom,
and columns with BA in three groups from left to right. The partic-
ipants positioned along the diagonal line are examples of partici-
pants with matched CA and BA. As an example, the middle right
panel indicated by * shows a 48-year-old female diagnosed with
hypertension, seizure disorder, kidney stone, and arteriosclerotic
heart disease, whose predicted BA was 65.8 years (BAI = BA—CA =
65.8—48 = 17.8 years). One visually apparent abnormality is the
relatively weaker sleep spindle density during N2 compared to
healthy participants of similar chronological age (middle left and
center panels).

3.2. Effect of EEG electrode placement

Most home-based EEG devices use fewer electrodes than lab-
based PSG. We therefore explored how EEG-based age prediction
depends on the number and location of EEG electrodes. Prediction
performance on the 1022 healthy testing participants using

Table 3
Brain age using subsets of EEG electrodes in healthy testing participants

Electrode Mean absolute Pearson’s correlation
deviation (years)

Frontal (F3 and F4) 9.6 0.80 (0.77—-0.82)

Central (C3 and C4) 12.2 0.78 (0.75—0.80)

Occipital (O1 and 02) 10.0 0.76 (0.73—0.78)

All electrodes 7.6 0.83 (0.81—0.85)

different subsets of EEG electrodes is shown in Table 3. Using all 6
electrodes (2 frontal, 2 central, 2 occipital) provided the lowest
prediction error (7.6 years) and the highest correlation with CA
(0.83) (Kruskal-Wallis p-value < 0.01). If limited to recording EEG
using 2 electrodes only, the frontal electrodes provided the best
performance with nonsignificant difference compared to all 6
electrodes (p-value = 0.20); the central and occipital electrodes led
to significantly reduced performance (p-value < 0.01). Therefore, it
is suggested to use frontal EEG electrodes if required to use fewer
EEG electrodes.

3.3. Longitudinal reliability using two central EEG channels

To assess the longitudinal reliability of the brain age model at
the population level, we used a subset of the SHHS data set where
each participant underwent 2 study visits, referred as SHHS1 and
SHHS2. The data set contains 987 adults for a total of 1974 nights of
EEG recorded from C3-M2 and C4-M1 only. The average increase of
chronological age between the 2 visits was 5.2 years (standard
deviation, SD 0.5 years) (Table 2). We trained the model in 2 ways.

First, we trained the model on 752 participants with paired EEGs
(1504 EEGs) from both visits and tested on the held out 235 par-
ticipants with paired EEGs (470 EEGs) in both visits. Testing results
are shown in Fig. 3A and B. The MAD was 8.1 years on SHHS1 and
7.8 years on SHHS2. The Pearson’s correlation was 0.66 (95% CI
0.58—0.73) on SHHS1 and 0.67 (95% CI 0.59—0.73) on SHHS2. The
average difference in predicted BA between the 2 visits, ABA = BA2
— BA1, was 5.4 years (SD 9.3 years) (Fig. 3C); hence, the magnitude
of the observed difference between the progression of mean
chronological age ACA = CA2-CA1 and mean BA ABA was |ACA-ABA
| = |5.2—5.4] = 0.2 years. A t-test revealed that this difference was
not statistically significant (p-value = 0.7).

Second, we investigated the effect of the training population. To
do this, we trained the model on the 2365 EEGs from healthy par-
ticipants in MGH data set using the C3-M2 and C4-M1 leads only (to
be consistent with SHHS EEGs). We then predicted BA on the 1974
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Fig. 3. (A, B) Chronological age (CA) versus Brain age (BA) from the 470 testing EEGs in SHHS when trained on the other part of SHHS. The red dashed line indicates identity. (D, E)
CA versus BA from the 1974 testing EEGs in SHHS when trained on the healthy participants in MGH data set. (C, F) Histogram of BA differences between 2 SHHS visits, showing
tracking of CA at the population level. The mean difference in predicted BA was 5.4 years in (C); and 4.3 years in (F). The dashed red line is the Gaussian fit to the histogram. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

paired EEGs in SHHS as the testing set. Results on the testing set are
shown in Fig. 3D and E. The MAD was 8.2 years on SHHS1 and
9.4 years on SHHS2. The Pearson’s correlation was 0.61 (95% CI
0.57—0.65) on SHHS1 and 0.56 (95% CI 0.52—0.60) on SHHS2. The
average difference in predicted BA between the 2 visits ABA was
4.3 years (SD 9.6 years) (Fig. 3F). In this case the difference between
mean progression of chronological age was statistically significant
(p-value <0.01, t-test), indicating that different populations (data
sets) did introduce some systematic error. However, the magnitude
of this difference was relatively small, |[ACA-ABA| = |5.2—4.3| =
0.9 years.

The results suggest that, at the population level, the model
longitudinally tracked brain aging when trained on either the SHHS
or MGH cohorts, with a marginal error of 0.2—0.9 years. We note
that these results were obtained using a restricted set of EEG
electrodes (C3-M2 and C4-M1). Given limited channels in the SHHS
EEG data, we were not able to investigate whether even higher
accuracy is possible using a full set of channels.

3.4. Correlation between covariates and brain age index

We collected various covariates from the MGH data set,
including sleep macrostructure (i.e., sleep stages), the Epworth
Sleepiness Scale, and measures of sleep disruption, and then ob-
tained the Spearman’s correlation with BAI. For healthy partici-
pants, the covariates with statistically significant (p < 0.05)
Spearman’s correlation are shown in ascending order in Table 4. The
full list of all covariates is shown in Table S6 in the supplementary
material. The amount of deep sleep (N3) showed the most negative
correlation with BAI, although the correlation is weak. Wake time
after sleep onset also showed weak but significant positive corre-
lation with BAI

One noteworthy lack of association is that BAI is statistically
independent of AHI (apnea-hypopnea index; number of apnea
events per hour of sleep, used to quantify severity of sleep apnea). A
scatter plot between AHI and CA/BA/BAI shown in Figure S3 in the
supplementary material reveals a correlation between AHI and CA
and BA but not BAL The histogram of BAI for AHI < 5 and AHI > 15
are shown in Figure S4, showing no significant difference between
the 2 groups (t-test, p = 0.70).

The weak correlations in Table 4 indicate that BAI was relatively
independent of these covariates. Therefore, BAI can be interpreted
as a relatively orthogonal metric for measuring sleep and brain
health. In other words, BAI was robust in participants with different
characteristics.

3.5. Correlation between disease and brain age index

We next investigated some population-level health correlates of
“excess BA”, BAl = BA—CA > 0. In Materials and Methods, we
describe criteria for significant neurological or psychiatric disease
(Table S1), which we hypothesized to have older BA than CA. This
hypothesis was verified in Fig. 4A. BAI for the healthy group (2365

Table 4
Covariates that have significant correlation with BAI (BA-CA)

Covariate Spearman'’s correlation
N3 time -0.11

N3 percentage —0.087

Sleep efficiency —0.082

Total sleep time -0.076

N2 time —0.065

Respiratory disturbance index 0.043

N1 percentage 0.058

Wake time after sleep onset 0.081
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version of this article.)

participants) was around 0 years, whereas BAI for the group with
significant neurological and psychiatric disease (167 participants)
increased up to 4 years with a significant difference (t-test p-value
< 0.01). Therefore, at the population level, participants with sig-
nificant neurological or psychiatric disease had on average BA
4 years older than their chronological age. Furthermore, in the
healthy group, the MAD was 7.6 years, and correlation between CA
and BA was 0.83; while in the group with significant neurological
and psychiatric disease, the MAD was larger at 9.5 years and cor-
relation smaller at 0.74.

Although often not associated with any formal neurological or
psychiatric diagnosis, there is biological plausibility and accumu-
lating evidence for the idea that hypertension and diabetes mellitus
accelerate brain aging (Gorelick et al.,, 2011, 2017). We therefore
explored whether EEG BA is sensitive to hypertension and diabetes.
These participants were identified using the diagnosis from 5 years
before to 1 year after the PSG recording, as well as the self-reported
medication intake form collected at the time of PSG recording. As
compared in Fig. 4B, the control group was defined as participants
taking no medications, having no diagnoses of hypertension or
diabetes, and no significant neurological or psychiatric disease. The
control group had a mean excess BA of BAI = —1.1 years (n = 472).
The “contrast” group was defined as participants with both hy-
pertension and diabetes, which had BAI = 2.4 years (n = 137). The
attributable excess BA was 3.5 years (p = 0.0002).

3.6. Model-derived age norm

The parametric formulation of our BA model allows studying
individual differences at the level of EEG features. To do this, we
first derived an “age norm”, that is, typical EEG feature values at
different CAs with matched BAs. Specifically, the age norm of age x
was obtained by averaging EEG features from all healthy partici-
pants who had both CA and BA within [x-5, X+5] years.

The age norm showed that when following a normal aging
process, the features most negatively correlated with age were
delta band (<4 Hz) powers in stage N3 sleep in the occipital and
central areas; and features that most positively correlate with age
were theta band (4—8 Hz) powers in stage N1 sleep in frontal, oc-
cipital, and central areas. The details are described in Table S6.

Using this model-derived age norm, we could examine reasons
for deviation from CA quantitatively. For example, Fig. 5A shows the
EEG spectrogram of a 29-year-old female with multiple medical
problems, including diabetes mellitus, obesity, smoking, a cere-
brovascular accident, congestive heart failure, and acute renal fail-
ure. Her brain activity resembled that of a much older adult. Her BA
was 63 years. As shown in Fig. 5B, when compared to the age norm,
her sleep EEG exhibited (1) less delta to theta ratio during deep N3
sleep; and (2) less theta and alpha band bursts, that is, more
continual theta and alpha, during N2 sleep.

Note that our results only showed that BAI reflects age and pa-
thology at the population level. Nevertheless this example sug-
gested the possibility that BAI may, with further studies, serve as a
personalized biomarker of brain health. Other examples are shown
in Figures S5—S7 in the supplementary material.

4. Discussion

The concept of differential aging—the idea that a 50-year-old
can “have the heart of a 20-year-old” or that the lungs of a 30-year-
old smoker “work like they’'re 80”—is useful clinically and is gaining
scientific traction. Similarly, while cognitive decline is a “normal”
part of aging, some individuals clearly age better than others. In this
work, we have developed a machine learning model that leverages
statistical changes across the adult lifespan in the pattern of brain
activity during sleep. We call the predicted age "brain age" or BA.
Model predictions are highly correlated with CA (r = 0.83, MAD =
7.6 years) for healthy participants, and at the population level, the
model accurately tracks advancing age. More interestingly, this
study presents preliminary evidence that excess BA (EEG BA in
excess than chronological age) reflects underlying brain pathology.
In particular, our findings show that significant neurological or
psychiatric disease accelerate brain aging, as do hypertension and
diabetes. These findings suggest that features of brain activity
during sleep, reflected in EEG, can be harnessed using machine
learning to provide an easily accessible and low-cost biomarker of
brain health.

One strength of our study is the use of large data sets: 2532 sleep
EEGs from the MGH Sleep Lab, and 1974 sleep EEGs from the SHHS
data set (Dean et al.,, 2016; Quan et al., 1997; Redline et al., 1998).
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Fig. 5. (A) The hypnogram and EEG spectrogram from frontal (F), central (C), and occipital (O) channels. (B) The left 2 bars show the chronological age and brain age for this
participant. The right parts show the top 5 features that contribute most positively to the older brain age. The blue bar is the feature value based on the model-based age norm at
age 29 years, with the error bar indicating the standard deviation. The red bar is the feature value for this participant. The number at the top/bottom indicates the model weight
associated with this feature. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

The number of EEGs involved in this study is large among relevant
“BA” studies (Cole and Franke, 2017). The large size of the data sets
helps to ensure the statistical power as well and to minimize se-
lection bias. A large training set helps ensure that the trained model
does not overfit to a particular data set, improving the ability to
generalize when applied beyond the training set. A large testing
set allows accurate statistical measurement of how accurately the
model performs.

Another strength of our study is the use of a parametric model,
which improves model interpretation by inspecting each EEG
feature and comparing to the age norm for each feature explicitly. In
contrast, nonparametric or semiparametric models such as kernel
methods and Gaussian process models (Franke et al., 2010) estimate
age based on the similarity to the training examples, where the
contribution of each feature is involved implicitly. An example of
interpretability is demonstrated in Fig. 5.

The deviation of EEG-based BA from CA arises from multiple
sources, which can be divided into technical and physiological
sources. Potential technical sources include (1) first-night effect,
where a participant’s quality of sleep is impaired by the effect of
the environment and polysomnographic recording; (2) constraints
of the current model, which assumes BA is a linear combination
(though approximately due to the softplus function to ensure
positivity) of sleep EEG features averaged separately for each sleep
stage over the night; and (3) imputation of missing sleep stages
based on Figure S1. Neurophysiological sources, our central inter-
est, might arise from (1) night-to-night variability; (2) underlying
diagnosed or undiagnosed neurological or psychiatric diseases. For
example, sleep pathology enhances amyloidogenesis, implicated in
the development of Alzheimer’s dementia (Ju et al., 2014). More-
over, normal glymphatic flow, required for clearance of amyloid
and other metabolic wastes that accumulate during wakefulness,
requires undisturbed sleep (Benveniste et al., 2017; Hladky and
Barrand, 2017); (3) general medical health, including diabetes
and cerebrovascular disease; (4) genetically determined interin-
dividual differences in the EEG; and (5) exposure to environmental
insults. Further studies are needed to clarify the relative contri-
butions of the various types of neurophysiological sources and to

measure the association between EEG-based BA and various out-
comes, such as cognitive performance (Steffener et al., 2016), in-
telligence (Ujma et al., 2017), and survival (Cole et al., 2018).
Additional unobserved sources, such as diet, exercise, and diseases,
might also further explain the variance. An additional important
question for future investigation is whether interventions can
change the brain aging process and lifespan, and whether im-
provements in brain health can be effectively tracked using the
sleep EEG.

Our study has important limitations. (1) Although we have
demonstrated that the change of BA after 5 years of follow-up is
close to 5 years at population level, our data set does not allow
studying variability in BA at the individual level. Understanding
the factors governing changes in BA over time and test-retest
reliability at the individual level are important topics for further
research. (2) Although we attempted to exclude participants with
significant neurological or psychiatric disease (criteria in Tables S1
and S3), it is possible that both the MGH and SHHS data sets still
include a variety of health conditions that could affect brain
health. Obtaining a large, “truly healthy” cohort is an important
future direction that will require a prospectively controlled study.
(3) We only include ages 18 to 80 years. The distribution of ages in
the data set is not uniform, where most of the participants are at
middle age. This could lead to less accurate prediction of BA for
older and younger participants. (4) Our model formulation is
limited. Advanced algorithms such as convolutional neural net-
works, trained end-to-end from raw EEG data rather than on
hand-engineered physiologically based features as in our model,
might predict age and capture biologically important variability
more accurately (Biswal et al., 2017; Cole et al., 2017). In addition,
whereas we average features within the same sleep stage, repre-
sentations learned by recurrent neural network models might
provide a more powerful summary of the overnight EEG that
utilizes more information (e.g., fragmentation of sleep stages due
to high AHI) and more accurately reflects BA. (5) Finally, conclu-
sions from our present results are primarily limited to the popu-
lation level. Although selected cases raise the possibility that BAI is
meaningful for individuals. Our data provide no way to definitively
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determine the sources of variation at the level of individuals (e.g.,
biological effects related to brain health vs. random night-to-night
variation). This is of course a classic issue in the clinical/biological
prediction literature, where evidence for a correlation at a popu-
lation level does not necessarily translate into a usable algorithm
for individual use. Nevertheless, our findings form the basis for
further studies and refinements. To reach individual level, first,
further studies with more granular detail about individuals’
medical conditions (e.g., medication doses), neurological function
(e.g., neuropsychiatric test scores), and brain structure (e.g.,
cortical thickness, total brain volume, white matter integrity, etc.)
will be required to better understand the biological mechanism of
deviations between EEG-based BA and chronological age.

5. Conclusions

Using a machine learning model, a measure of BA can be
inferred from the pattern of brain activity during sleep. Our data
suggest that neurological, psychiatric, and medical illnesses that
adversely affect brain health result in the model predicting an
older BA. Using participants with matched chronological age and
BA, we developed an age norm to provide a direct interpretation of
an individual’s deviation from normal aging in terms of EEG fea-
tures. In summary, the EEG-based BA serves as a potential
biomarker, which sets the stage for future EEG-based studies of
brain health.
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