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Abstract—Objective: Automatic detection and analysis
of respiratory events in sleep using a single respiratory
effort belt and deep learning. Methods: Using 9,656
polysomnography recordings from the Massachusetts Gen-
eral Hospital (MGH), we trained a neural network (WaveNet)
to detect obstructive apnea, central apnea, hypopnea and
respiratory-effort related arousals. Performance evaluation
included event-based analysis and apnea-hypopnea index
(AHI) stratification. The model was further evaluated on a
public dataset, the Sleep-Heart-Health-Study-1, containing
8,455 polysomnographic recordings. Results: For binary
apnea event detection in the MGH dataset, the neural
network obtained a sensitivity of 68%, a specificity of 98%,
a precision of 65%, a F1-score of 67%, and an area under
the curve for the receiver operating characteristics curve
and precision-recall curve of 0.93 and 0.71, respectively.
AHI prediction resulted in a mean difference of 0.41 ±
7.8 and a r2 of 0.90. For the multiclass task, we obtained
varying performances: 84% of all labeled central apneas
were correctly classified, whereas this metric was 51%
for obstructive apneas, 40% for respiratory effort related
arousals and 23% for hypopneas. Conclusion: Our fully
automated method can detect respiratory events and
assess the AHI accurately. Differentiation of event types
is more difficult and may reflect in part the complexity
of human respiratory output and some degree of
arbitrariness in the criteria used during manual annotation.
Significance: The current gold standard of diagnosing

Manuscript received May 20, 2021; revised November 16, 2021; ac-
cepted December 13, 2021. Date of publication December 20, 2021;
date of current version May 20, 2022. This work was supported in
part by the American Academy of Sleep Medicine (AASM Foundation
Strategic Research Award), in part by Football Players Health Study
(FPHS) at Harvard University, in part by the Department of Defense
through a subcontract from Moberg ICU Solutions, Inc, and in part by the
NIH under Grants 1R01NS102190, 1R01NS102574, 1R01NS107291,
and 1RF1AG064312. The work of M Brandon Westover was supported
in part by the Glenn Foundation for Medical Research, and in part by the
American Federation for Aging Research (Breakthroughs in Gerontology
Grant). (Corresponding author: M. Brandon Westover.)

Thijs E. Nassi and Michel J. A. M. van Putten are with the University
of Twente, The Netherlands.

Wolfgang Ganglberger, Haoqi Sun, and Abigail A. Bucklin are with the
Massachusetts General Hospital, USA.

Siddharth Biswal is with the School of Computational Science and
Engineering, Georgia Institute of Technology, USA.

Robert J. Thomas is with the Deaconess Medical Center, USA.
M. Brandon Westover is with the Massachusetts General Hospital,

Boston, MA 02114 USA (e-mail: mwestover@mgh.harvard.edu).
This article has supplementary downloadable material available at

https://doi.org/10.1109/TBME.2021.3136753, provided by the authors.
Digital Object Identifier 10.1109/TBME.2021.3136753

sleep-disordered breathing, using polysomnography and
manual analysis, is time-consuming, expensive, and only
applicable in dedicated clinical environments. Automated
analysis using a single effort belt signal overcomes these
limitations.

Index Terms—Apnea hypopnea index, deep learning,
polysomnography, respiratory effort, respiratory event de-
tection, sleep apnea.

I. INTRODUCTION

S LEEP disorders such as sleep apnea and insomnia affect
millions of people worldwide [1]. Clinical effects include

difficulty in initiating and maintaining sleep, impaired alertness,
and hypertension. Excessive daytime sleepiness and fatigue,
two common symptoms associated with sleep disorders, have a
large impact on population health [2], [3]. Accurate and timely
diagnosis of a patient’s sleep disorder is therefore essential.
Patients with apnea, especially obstructive sleep apnea, are at
increased risk for traffic accidents, postoperative complications,
and delirium [4], [5]. Untreated sleep apnea is associated with
arrhythmias, heart failure and stroke. Studies that measure the
apnea-hypopnea index (AHI) show that an estimated 49.7% of
male and 23.4% of female adults have moderate-to-severe sleep-
disordered breathing, though a lower percentage are clinically
symptomatic [5].

The gold standard to measure sleep objectively is laboratory-
based polysomnography (PSG). PSG is conventionally scored
based on the American Academy of Sleep Medicine (AASM)
guidelines. Scoring PSG recordings is a time-consuming task
performed by specialists in dedicated sleep centers, making this
an expensive process both in time and costs. Automation of PSG
analysis would decrease the required analysis time and reduce
costs. Moreover, automated PSG analysis computer models
could be implemented in clinical centers anywhere in the world
and across a variety of data acquisition options, including home
sleep testing, testing in acute care environments, specific opera-
tional conditions such as high altitude, and consumer wearable
devices.

Medical data is complex and involves a large number of
variables and context that are difficult to encompass by pro-
grams based on a fixed set of rules. Deep learning models
such as convolutional neural networks (CNN) and recurrent
neural networks (RNN) have been applied in many domains
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TABLE I
OVERVIEW OF OTHER STUDIES PERFORMING AUTOMATED RESPIRATORY EVENT DETECTION USING 96 PATIENTS OR MORE

Analysis models: RCNN =recurrent and convolutional neural networks, LSTM = long short-term memory, CNN = convolution neural network,
MHLNN = multiple hidden layers neural network, GMM = gaussian mixture model, LR = logistic regression, CTM = central tendency
measure, RF = random forest. Classifier types: A = apnea, H = hypopnea, N = normal, O = obstructive, C = central G = global.

to solve complex pattern recognition tasks [6]. Deep learning
algorithms rely on patterns and inference rather than explicit
instructions and can learn intricate relationships between fea-
tures and labels from data. Implementing neural networks has
become relevant in analyzing the heterogeneous kinds of data
generated in modern clinical care [7]. Various types of deep
learning algorithms have been found to be suitable for analyzing
specific types of data. For instance, CNNs have been successful
in classifying objects in images. Typical CNN architectures,
however, are not ideal when analyzing temporal data. Temporal
data is typically better exploited by RNNs. However, the re-
cently introduced CNN, WaveNet architecture has been found
to perform better than RNNs on several tasks [8]. WaveNet’s
architecture resembles a typical CNN, yet the application of
dilated causal convolutions creates an effectively larger receptive
field. This renders WaveNet capable of detecting both spatial
patterns and long-range temporal patterns. WaveNet was orig-
inally designed to synthesize speech; however, its application
has been found suitable for analyzing other types of signals.
In 2018 a challenge organized by the PhysioNet Computing
in Cardiology aimed to detect sleep arousals from a variety of
physiological signals, including signals derived from respira-
tion. The winning model was a modified WaveNet architecture,
suggesting that this CNN architecture can indeed perform suc-
cessfully in other domains such as the automation of PSG-related
tasks [9].

In the last two years a significant number of papers have
been published on the detection of sleep apnea, as described
by recent review papers [24], [25]. Finding a patient-friendly
and accurate sensor or signal, especially in combination with
a suitable analysis model, is clearly an ongoing area of high
relevance. An overview of other sleep apnea studies that use
large datasets (at least 96 patients) can be found in Table I.

Sleep apnea detection methods typically use various breathing
measurements and oximetry [25]. Alternative methods using
signals derived from electrocardiography (ECG) have shown
some promise for predicting AHI as well, although such data has
an indirect relationship to the respiratory system and therefore to
sleep apnea [24], [26]. This more indirect method of analyzing
respiration requires additional processing and can be affected by

other illnesses including heart failure and cardiac arrhythmias,
rather than sleep apnea [11]. Classification of respiratory events
typically requires both airflow and respiratory effort signals.
Using multiple physiological signals to detect sleep apnea can
provide good performance [10], [12]. However, this leads to
similar problems as the current gold standard; using many
different sensor signals is considered uncomfortable, expensive,
and time-consuming. Recent studies show that automated apnea
scoring with limited sensors use (i.e. airflow or respiratory effort)
can still yield acceptable performance [11], [23], [27]. Using
airflow or respiratory effort for apnea detection bear different
advantages and disadvantages. Airflow measures are expected
to yield slightly better performance but need access to the
nose/mouth, which may be difficult in specific environments. In
situations where the airflow signal may not be readily acquired,
an effort-belt based classification could overcome this limitation.
Examples include in intensive care units, home tracking in heart
failure or chronic obstructive pulmonary disease, those using
nasal oxygen, and war fighter conditions. The effort belt is highly
convenient, and this input signal can be acquired by a range of
contact and contactless technologies in nearly every possible
environment.

The ability to identify and discriminate between the specific
respiratory events that are typically scored in PSG while using
fewer signals is unknown to the current clinical setting. In this
research we aimed to create a fully automated method that
can detect respiratory events, discriminate between the different
types of respiratory events, and assess the AHI with sufficient
efficiency for clinical implementation using only a single respi-
ratory effort belt.

II. METHODS

A. Dataset

The dataset used to train our model was from The Mas-
sachusetts General Hospital (MGH) sleep laboratory (2008-
2018), summarized in Table II. The MGH Institutional Review
Board approved the retrospective analysis of the clinically ac-
quired PSG data. In total 9656 PSG recordings were successfully
exported. We applied a 5-fold cross-validation for which we split
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TABLE II
DATASET DISTRIBUTION (N=9656)

TABLE III
OVERALL PER-EVENT PERFORMANCE FOR EXPERIMENT 1 WITH ALL

VALUES IN MEAN PERCENTAGES AND 95% CONFIDENCE INTERVALS, AND
EXPERIMENT 2 WITH MEAN PERFORMANCE AMONG THE INDIVIDUAL

EVENTS, I.E. OBSTRUCTIVE APNEA, CENTRAL APNEA, RERA, HYPOPNEA

Note that for experiment 2 all performance metrics (except Cohen’s kappa) do not show
a 95% confidence interval range since these are mean values from all individual event
types as seen in Table IV.

the dataset into training, validation, and test subsets using respec-
tive ratios of 70%, 10%, 20% of the total number of recordings.
Multiple records from the same patients were constrained to the
same fold. Patients with and without breathing assistance by
continuous positive airway pressure (CPAP) were included.

We included a secondary test dataset for external validation
of our model (trained on all MGH data). This dataset was
collected by the Sleep Heart Health Study (SHHS) and included
8455 PSG recordings. For this research we only used the signal
measured at the abdomen using a respiratory effort belt (in-
ductance plethysmography). This signal, in comparison to the
available respiratory signals measured on the thorax, is expected
to provide the best predictive performance [28].

The MGH sleep center is an AASM accredited sleep cen-
ter, with stringent ongoing requirements for documenting and
maintaining high inter-scorer reliability. The center maintains
an inter-rater reliability of over 85%. Respiratory event detec-
tions included obstructive apneas, central apneas, mixed apneas,
hypopneas, and respiratory effort-related arousals (RERAs). Be-
cause of the relatively low number of mixed apnea events in our

dataset, 1.7% of all events, all mixed apnea events were labeled
as obstructive apnea, since the characteristics are expected to
look most similar. We define respiratory events as a term that
encompasses any type of apnea, hypopnea and RERA. The
definition apnea reflects any type of apnea and hypopnea.

Recordings obtained from the SHHS database were annotated
according to SHHS guidelines. A key difference between the
two datasets is the primary respiratory scoring signal in the
original source – nasal pressure (MGH) and thermistor (SHHS).
This difference and implications will be discussed further below.
Besides the different flow sensors the MGH and SHHS dataset
only include labels that are scored using the same criteria as
defined by the AASM (4% rule for hypopneas), and individual
recordings were annotated by a single scorer for both datasets.
For the MGH data there was a total of 7 scorers whereas for the
SHHS data the number of experts is not reported. We chose the
SHHS dataset as it was the largest study which used a uniform
methodology for acquisition and scoring.

B. Preprocessing and Data Preparation

All recordings that were incomplete or did not include any
sleep were removed. For the SHHS dataset, we only used
recordings that contain mostly good quality abdominal effort
signals, as defined by the SHHS [29]. Specifically, for the visit
1 and visit 2 subsets, only recordings with at least 4 hours of
artifact-free signal or 75% of artifact-free signal, respectively,
were included. To extract the relevant respiratory information
and remove present noise, minimal preprocessing techniques
were applied. The abdominal respiration measurement from
both the MGH data and the SHHS data consisted of a single
channel with a sampling frequency of 125 Hz, 200 Hz or 250 Hz.
A notch filter of 60 Hz was applied to reduce line noise. A low-
pass filter of 10 Hz was applied to remove higher frequencies
not of interest, and consequently all recordings were resampled
to 10 Hz. Z-score normalization was performed using the mean
and standard deviation of the 1st to 99th percentile clipped signal
to optimize the training process of the neural network.

The training data was segmented into 7-minute segments
(see II-D), combined with a stride of 30 seconds to reduce the
large training dataset size. Each segment was assigned one
ground truth class label – the sleep expert’s label located in the
center of the segment. We segmented the test data in the same
way, except that we used a stride of 1 s, which allowed for a
respiratory event prediction for each second.

C. Model and Prediction Tasks

In this research we utilized a WaveNet model (see model
architecture in Section II-D) to automatically detect apneas,
hypopneas, and RERAs from a single effort belt signal, without
use of additional sensors that are conventional in PSG mea-
surements (e.g. thermistor, nasal pressure, oxygen saturation,
electroencephalography or electrocardiography), and without
using human-engineered features. As described above, the signal
was split into 7-minute segments and, in this way, the model was
trained to predict only the center index of a 7-minute segment,
while having 3.5 minutes of context information before and after
the center index. We designed the following two prediction tasks:
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Fig. 1. Data flow scheme for model development and testing. The model was trained and validated on the dataset from the Massachusetts General
Hospital (MGH) whereas the dataset from the Sleep Heart Health Study (SHHS) was used for external validation. Both the Apnea Hypopnea Index
(AHI) and the respiratory disturbance index (RDI) were computed during post-processing.

� Binary classification to discriminate non-apnea events
from apnea-hypopnea events (regular breathing and respi-
ratory events). Based on the predicted respiratory events,
we computed the predicted AHI as the number of predicted
respiratory events per hour of sleep.

� Multiclass classification to discriminate the respiratory
event classes: no-event, obstructive apnea or mixed apnea,
central apnea, RERA, hypopnea. From the sum of the
detected respiratory events, we determined the AHI and
respiratory disturbance index (RDI).

In both tasks we used the originally scored multiclassification
labels. For our binary classification task we converted all types
of apnea and hypopneas into one grouped class, apnea. In both
experiments our model provided a probability for all included
classes. The highest probability among the possible classes
constitutes the output of our model. In Fig. 1 the complete
workflow scheme is shown.

D. Model Architecture

WaveNet is a fully convolutional neural network [8], [30]. In
supplementary Appendix Fig. A1 we show the schematics of a
residual block of the WaveNet model. The architecture makes
use of an exponentially increasing dilation factor resulting in
exponential growth of the receptive field with each layer. This
causes the receptive field to double in length for each hidden
layer. In previous work we showed that 4.5-minute segments
are ideal for sleep staging from respiratory effort data [31]. The
exponential growth of receptive field gives us a limited number
of options without making major changes to the fundamental
architecture of the WaveNet model (10 layers is equivalent to
1.7 minutes, 11 layers is equivalent to 3.4 minutes, and 12 layers

Fig. 2. Flow scheme for the boosted model process that was per-
formed to create a more balanced dataset to train our WaveNet model.

is equivalent to 6.8 minutes). To ensure enough context for our
respiratory event scoring task we opted for 12 hidden layers,
resulting in 4096 samples in our 10 Hz signal, equivalent to
approximately 7 minutes of context. Instead of using WaveNet
as a generative model that uses the last output as its subsequent
input (recurrent generation), we trained WaveNet in a supervised
manner where the input is a respiratory effort signal and the
prediction target is either binary or quinary, for experiment 1 and
2 respectively. The original WaveNet model makes use of causal
convolutions where the output is a function of previous time
steps only, no future time steps. For this research we modified
the WaveNet architecture by using non-causal convolutions and
shifting the output node, which results in that the output is now
a function of both previous and future time steps. Non-causal
connection, i.e. past and future context, matches better to a
human sleep scorer conceptually, as they have access to the full
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Fig. 3. ROC and PR curves for binary classification in experiment 1. (a) Receiver operating characteristics curve (b) Precision-recall curve.

Fig. 4. AHI classification confusion matrices for both experiments with Cohen’s kappa values of (a) 55%, MGH- binary classifier. (b) 32%, SHHS-
binary classifier and (c) 56%, MGH- multi-class classifier.

night recording. As in the original paper, a kernel size of 2 was
used. The number of filters for each of the convolutions was set
to 32, with a dropout rate of 0.2, without further hyperparameter
optimization. The categorical cross entropy loss function was
applied during training,

loss =
N∑

i=1

−y′ilog(yi), (1)

where y represents the predicted probability distribution, y′
represents the true distribution, and N represents the number
of classes. To address overfitting and to improve generalization
of the network, besides using dropout, we have implemented an
early stopping procedure, where we stop training if the perfor-
mance on a validation set does not increase for 10 consecutive
training rounds. We used a batch size of 150 segments and a
learning rate of 0.001, which was reduced to 10% when three

consecutive training rounds showed no improvement. ADAM
optimization was used for training the classifier.

E. Boosting for Imbalanced Data

Classification with imbalanced data is challenging in many
real-world deep learning applications [32], [33]. For the PSG
recordings in our research, the number of segments containing
only regular breathing is typically much larger than the segments
containing respiratory events, even for patients classified with
severe apnea. For this problem we designed a boosted model
approach by applying a binary WaveNet classifier, or boost-
model, over multiple iterations. To remove a large proportion of
segments with regular breathing without removing many seg-
ments including apnea events, only segments with an extremely
high probability of regular breathing were removed by the boost-
model. In our approach we selected a probability threshold to
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Fig. 5. Scatter plots showing the correlation between the expert-scored AHI and the model predicted AHI in experiment 1 and 2. The fitted robust
linear regression model is shown in red. (a) MGH- binary classifier. (b) SHHS- binary classifier. (c) MGH- multi-class classifier.

Fig. 6. Histograms of the relative difference in AHI determined by the experts vs the model in experiment 1 and 2. (a) MGH- binary classifier. (b)
SHHS- binary classifier. (c) MGH- multi-class classifier.

make our boost-model extremely sensitive for apneas, based on
the receiver operating characteristic (ROC) curve. In the first
iteration we used a true positive rate of 0.995 and decreased
this value by 0.010 for each subsequent iteration. The boosted
model iterations stopped when the desired balance in classes
was obtained. This balance was defined by 3.3:1 ratio of regular
breathing with respect to the sum of events.

In Fig. 2 the boosted model flow scheme is shown.
In each iteration, the boost model received non-rejected sam-

ples from the previous iteration, i.e. only true positive and false
positive segments. Using this approach, the boost-model was
trained to discriminate regular breathing from other respiratory
events, while being exposed to a decreasing and increasingly
more challenging dataset. In this way, in every iteration our
boost-model should learn new nuanced characteristics that de-
fine a normal breathing rhythm. Using this boosted approach,
we vastly reduced the number of segments containing regular
breathing and improved effective classification by our main
WaveNet model. Moreover, the boost-model was expected to
remove segments with regular breathing that are relatively sim-
ple to distinguish from apnea while leaving the more complex
segments for our main model. All boost-models were trained
on the training dataset using the same hyperparameters as our

main binary model, and were applied on the validation and test
dataset.

F. Post-Processing

After applying our model, we obtained an apnea prediction
for each second. The prediction resolution of 1 Hz allowed high
fluctuations of predicted events and allowed detection of very
brief events. Both situations were considered not physiologically
plausible, therefore, we designed a smoothing algorithm. This
smoothing algorithm removed short events and rapidly changing
events. The algorithm was based on a moving window of 10
seconds. The following rules were applied for each window.

� When a minimum of 3 out of 10 seconds was classified as
no-event, the complete window was set to no-event.

� If a window was classified as an event and multiple types
of events were present, the type of event that occurred most
became the prediction for the complete window.

The selection of 3 seconds was based on manual, visual
analysis on classifier outputs on a small subset of the patients
in the training set (less than 20 patients). We do not believe
the performance is sensitive to the choice of this parameter (i.e.
between 2 and 4 out of the 10 seconds).
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Finally, consecutive events with a combined length of two
windows or greater were converted into a single event predic-
tion. The type of event that held the largest proportion among
the combined events indicated this new prediction. Applying
the smoothing algorithm resulted in predicted events with a
minimum length of 10 seconds, similar to what is suggested
by AASM guidelines.

G. Model Evaluation

We computed confusion matrices of the per-event perfor-
mance of our model to obtain a performance granularity with
better clinical interpretability than using sample-to-sample com-
parison. The true positives (TP), true negatives (TN), false
positives (FP) and false negatives (FN) were computed for each
of the 2 or 5 classes, respectively, for experiment 1 and 2. A
predicted event was considered a correct prediction when more
than 50% of its duration overlaps with an expert label. The
number of true negatives was computed by the accumulated time
where no-event was found divided by the average duration of all
expert-scored events (i.e. 18 seconds). Next, the TP, TN, FP and
FN values were used to determine the following event-per-event
performance metrics of our model.

Accuracy =
TP + TN

TP + TN + FP + FN

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Precision =
TP

TP + FP

F1 score =
2× Sensitivity × Precision

Sensitivity + Precision

Additionally, Cohen’s kappa values were determined using
the formula in Cohen’s original work [34]. For all above men-
tioned metrics, we obtained the 95% confidence interval by boot-
strapping over patients (sampling with replacement by blocks of
patients) 10.000 times. The confidence interval was computed as
the 2.5% (lower bound) and the 97.5% percentile (upper bound).
For the binary tasks the ROC curve and precision-recall (PR)
curve and their corresponding areas (AUCROC AUCPR) were
computed.

In addition to event-per-event evaluation, we evaluated global
scoring performance. Global assessment of sleep apnea severity
is typically used for clinical diagnosis [24]. For the first exper-
iment we determined the AHI value per patient, whereas in the
second experiment we determined the AHI and RDI value per
patient using the following computations.

AHI =
OA + CA + HY
hours of sleep

RDI =
OA + CA + HY + RERAs

hours of sleep

where OA is obstructive apneas, CA is central apneas, and HY
is hypopneas. We used the already scored sleep stages from
the original annotations to differentiate between sleep and wake

time for the patients. We decided to not use “time in bed” as the
denominator, as in previous work we have shown it is possible to
reasonably stage sleep with one effort belt signal as input [31].
To keep the focus of this paper on apnea detection with one
effort belt, we believe using the expert sleep labels helps to best
answer our research question.

With the AHI score all patients were categorized as normal
or mild, moderate or severe sleep apnea. Categorization was ac-
cording to conventional criteria as defined by AASM guidelines.

� Normal breathing: AHI < 5
� Mild sleep apnea: 5 ≤ AHI < 15
� Moderate sleep apnea: 15 ≤ AHI < 30
� Severe sleep apnea: AHI ≥ 30

We obtained the classification accuracy of our model by
creating a confusion matrix for the four AHI scores. The clas-
sification accuracy displays the ability of the model to assign
a patient to any of the four AHI categories. To gain insight
into accuracy of the AHI prediction disregarding the discrete
borders used in categorization, histograms and Bland-Altman
plots computed to show the difference between the AHI value
scored by the experts and the AHI value predicted by our model.
For both experiments, scatter plots visualizing the correlation
between the expert-scored AHI and the algorithm-predicted AHI
were computed. Additionally, for experiment 2, we computed
scatter plots for the RDI and each type of respiratory event per
hour of sleep. A robust linear regression model with bi-squared
cost function was fitted to the data to compute the correlation
between the scored AHI by the experts and predicted AHI by
our model [35]. This model was selected to mitigate the effect of
outliers. Also, Cohen’s kappa values were determined for AHI
prediction.

We provide the analysis code and computational models used
in this study on our GitHub page [36].

III. RESULTS

For the MGH and SHHS testing dataset, 16 and 1128 record-
ings, respectively, were removed due to insufficient sleep or
erroneous data.

The boosted model approach resulted in 5 consecutive model
iterations before reaching the desired class balance in both
experiment 1 and 2. In experiment 1, after applying 5 boost-
models, the total number of segments decreased from 7,810,448
to 1,614,791 (79.3%), while the total number of events decreased
from 448,855 to 395,278 (11.9%). The event distribution for
obstructive apnea, central apnea, and hypopnea was 30.4%,
17.4%, and 52.2%, respectively. During the training process in
experiment 2, the number of segments decreased from 7,810,448
to 1,904,537 (75.6%), while the number of events decreased
from 653,082 to 575,127 (11.9%). The event distribution for ob-
structive apnea, central apnea, RERA, and hypopnea was 21.3%,
12.0%, 29.0%, and 37.7% respectively. Appendix Table VI in
the supplementary material shows a full summary of the segment
distribution after applying each boost-model during training in
experiments 1 and 2.

In Appendix Fig. A2 in the supplementary material an ex-
ample recording can be found. As the large flat parts show no
continuous false positive predictions we are convinced that our
model learned not to classify such regions as respiratory events.
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TABLE IV
PER-EVENT PERFORMANCE IN EXPERIMENT 2 INCLUDING MEAN

PERCENTAGES AND 95% CONFIDENCE INTERVALS

A. Per-Event Performance

An overview of the per-event performance metrics for the
binary task are given in Table III. An AUCROC value of 0.93 and
AUCPR of 0.71 was found for the MGH dataset. The AUCROC

and AUCPR for the SHHS dataset were 0.92 and 0.56 (see Fig. 3
for the ROC and PR curves). In the supplementary material,
Appendix Fig. A3 shows four segments including TP, FP and
FN examples. Here, the effect of post processing on the raw
WaveNet model predictions can be observed.

In experiment 2, the multiclass model resulted in an overall
accuracy of 97%. Mean performance metrics over the four respi-
ratory event classes can be observed in Table IV. Performances
vary considerably for the different classes, e.g. while 84% of all
expert-labeled central apnea events are correctly classified, this
is only true for 23% of hypopneas.

For both experiment 1 and 2 confusion matrices are shown in
the supplementary material, Appendix Table VII. The training
and validation performance on the MGH dataset is summarized
in Appendix Table VIII. Performance of all metrics is similar
for training, validation and test set, showing the model did not
overfit the training data.

B. AHI Stratification

We next assessed the performance of our model to classify
the severity of AHI. For the MGH dataset in experiment 1, per-
formance among each AHI subgroup is shown in Table V. The
sensitivity, precision and F1-score increased with the severity of
apnea. The opposite effect was observed for the accuracy and
specificity.

We computed the confusion matrix for AHI prediction, as
shown in Fig. 4. Overall, 69% of patients from the MGH dataset
and 54% from the SHHS dataset were assigned to the correct
AHI category. Cohen’s kappa values for AHI classification were
55% and 32% for the MGH and SHHS dataset, respectively. In
experiment 2, 70% of all patients were classified in the correct
AHI category using the MGH dataset. Cohen’s kappa value
was 56%. Most misclassifications resulted in false positives in
neighboring AHI categories.

The scatter plots in Fig. 5 show the correlation between the
expert-scored AHI and the model predicted AHI from exper-
iment 1. The r2 was 0.90 for the MGH dataset and 0.79 for
the SHHS dataset. For experiment 2, an r2 of 0.90, 0.84, 0.96,
0.96, 0.38 and 0.66 was determined for AHI, RDI, obstructive

apneas, central apneas, RERAs and hypopneas, respectively, see
Appendix Fig. 10 in the supplementary material.

The computed histograms represent the difference between
the AHI value scored by the experts and the AHI value predicted
by our model, see Fig. 6. A mean difference in AHI of 0.41 and
-0.44 with a standard deviation of 7.80 and 7.36 was found for
the MGH dataset in experiment 1 and experiment 2. The mean
AHI difference for the SHHS dataset was 5.97 with a standard
deviation of 9.54. In Appendix Fig. A5 Bland-Altman show the
difference between the AHI value predicted by our model and
the AHI value scored by the experts.

IV. DISCUSSION

A deep neural network method was developed to classify
typical breathing disorders during sleep based on a single respi-
ratory effort belt used in PSG. In a first experiment our WaveNet
model successfully discriminated respiratory events from regu-
lar breathing on our primary dataset with an accuracy of 96%,
and sensitivity, specificity, precision and F1-score of 68%, 98%,
65% and 67%, respectively. AHI was predicted for each patient
using the number of respiratory events with an accuracy of 69%.
It is notable that most misclassifications of our model resulted in
false positives into the neighboring AHI categories. This effect is
best visualized in the histograms in Fig. 6; the unimodal and sym-
metrical shape shows that a decrease in number of false positives
was observed as the difference between the predicted AHI and
the sleep-expert scored AHI increased. The correlation between
expert-scored AHI and algorithm-predicted AHI showed an r2

of 0.90. It is possible to adjust the predicted AHI cut -offs to
improve AHI classification. However, we decided to use the
original AASM criteria, because these are generally recognized
as clinically meaningful and well understood categories.

When applying our model on a secondary dataset obtained
from the SHHS, a slight decrease in model performance was
observed. This is likely due to imperfect generalization to a
dataset where different respiratory effort sensors are used. It is
important to note that a thermistor was used to detect respiratory
events in the SHHS study, whereas a nasal pressure sensor was
used in the MGH study. It is possible that nasal pressure-based
scoring, regardless of ancillary signals used, is more sensitive
in detecting sleep-disordered breathing than thermistor-based
scoring [37]. Therefore, it could be that a significant number
of events were missed during annotation in the SHHS study.
When observing the performance of our model applied on the
SHHS dataset a decrease of approximately 15% was observed
for the precision and f1-score. Sensitivity, however, slightly
increased. This observation could be explained by the different
methodology used while annotating events. The fact that our
model generally overpredicts AHI when applied on the SHHS
dataset, as seen in the confusion matrix of Fig 4(b) and the scatter
plot of Fig. 5(b), is in line with this assumption. We recognize
that the SHHS may have used ancillary signals. Nevertheless,
use of the thermistor signal as the primary flow channel is one
possible explanation for our results.

The guidelines for scoring respiratory events manually have
evolved over the years but have remained largely driven by
consensus. Thus, for example, the requirement of a 50% or 30%
reduction in signal amplitude is arbitrary; there is no data to
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TABLE V
SUMMARY PERFORMANCE METRICS FOR DIFFERENT STUDY SUBGROUPS FOR THE MGH DATASET IN EXPERIMENT 1 WITH ALL VALUES IN PERCENTAGES

suggest that a 35% or 60% would be less or more clinically
meaningful. Moreover, visual discrimination of small percent-
age differences is likely poor. During polysomnography or even
home sleep study recordings, the multichannel nature of the
data enables increased scoring accuracy by associating changes
with neighboring signals. Moreover, airway collapse is common
during central apnea, and high loop gain can drive obstructive
events. Thus, the differentiation of obstructive and central events
is not as pathophysiologically clear as clinical scoring may
suggest. This biological reality of blurred boundaries will be
reflected in any manual or automated scoring approach.

In a secondary experiment our model successfully identified
the type of the included respiratory events, i.e. central apneas,
obstructive apneas, hypopneas and RERAs. Despite a similar
overall accuracy, discrimination of the specific respiratory events
resulted in a decreased per-event performance with respect to
the first experiment. Central apneas were detected with high
sensitivity of 84%, expectedly due to the apparent effect of the
disorder on respiratory effort. Often markedly reduced respi-
ratory effort is observed during central apnea events, resulting
in clear features for algorithms to recognize. We expect that
this is the main reason of the high-performance metrics for the
detection of central apneas. This is true to a lesser extent for
obstructive apnea events, hence the slightly lower performance
when compared to the central apneas. When using a single
effort signal, thoracoabdominal asynchrony is undetectable. If
using more than one effort sensor, this feature could enhance
differentiation between obstructive apnea and central apnea by
our model. The recognition of hypopneas and RERAs was
considered moderate, with an F1-score of 31% and 29% respec-
tively. The scatter plots show underprediction by our model,
indicating limited sensitivity rather than specificity. Without ad-
ditional information derived from other physiological signals the
identification of hypopneas and RERAs appears difficult. The
moderate performance of our model in differentiating no events,
hypopneas, and RERAs might have three different causes: 1)
a general difficulty in differentiating RERAs from hypopneas
and unknown gold-standard performance as there is no human
expert inter-rater agreement available for this task; 2) the lack of
other complementary signals such as blood oxygen saturation
signals; and 3) insufficient model complexity or architecture.
For future research, we propose the collection of human expert
inter-rater agreement data before researching the impact of the
choice of input signals and other model architectures for the
hypopnea-RERA classification task.

Misclassification often meant that an event of a particular
respiratory class was classified as a different class. When ob-
serving the AHI stratification performance of our multiclassi-
fication model, large variation in performance was observed
among the various respiratory events. Yet, when the different
predicted classes are grouped together to binary apnea events,
a similar correlation was found between the expert-scored AHI
and the algorithm-predicted AHI. An r2 of 0.90 was determined,
indicating that AHI prediction based on the specific respiratory
events is feasible. Very similar performance was observed in
AHI prediction confusion matrices with respect to the binary
classification of experiment 1. The ability to discriminate various
respiratory events is clinically valuable but may not be achiev-
able by using manual scoring as a gold standard. The type of
breathing assistance and overall apnea treatment may vary for
different underlying pathology leading to apnea. Specifying the
type of apnea will therefore provide aid in improving personal-
ized patient care.

To best way to assess clinical applicability of a novel apnea
detection model is by comparing model-expert agreement to
expert-expert agreement. Despite the lack of inter-rater (IR) per-
formance using only respiratory effort signals, the current over-
all respiratory event expert-expert agreement shows significant
misclassification as well. The AASM reports an IR agreement
accuracy ranging from 39.8% and 77.1%, for multi-class clas-
sification of obstructive apnea, central apnea, mixed apnea, and
hypopneas. Our models do show a similar accuracy range [38].
It is, however, difficult to compare performance directly, since
our performance is computed based on a per-event 50% overlap
approach, while the AASM reports their IR performance based
on single events scored in 30 s epochs. To conclusively assess
clinical applicability identical performance metrics should be
used. In future research we plan to collect respiratory annotations
from multiple experts per PSG study, enabling a fair and more
in-depth human-human and human-algorithm analysis.

Even though we did combine mixed apnea and obstructive
apnea during training, the characteristics of the two apnea types
are not the same. In fact, mixed apneas may resemble central
apneas in the first half of the event, whereas it resembles more of
the phenotype of obstructive apnea in the latter half of the event.
To study this, we randomly selected 1000 expert-scored scored
events of each apnea type (i.e. obstructive apnea, central apnea,
and mixed apnea) and show the distribution of predicted classes
for all samples within those events by our WaveNet model. In
Appendix Fig. A6 we show some examples of expert scored
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mixed apnea events and the according model predictions. We ob-
served that our WaveNet model does indeed show a fairly equal
distribution of samples predicted as central (42%) and obstruc-
tive (56.5%) for expert-scored mixed apneas (with remaining
1.6% of samples predicted as hypopnea), Appendix Fig. A7(c).
As expected, the majority of samples within obstructive events
were predicted as obstructive (63.5%), Appendix Fig. A7(b),
and the majority of samples within central events were predicted
as central (83.8%), Appendix Fig. A7(a). Among mixed apnea
events, an increased prediction proportion for central apnea was
seen in both the first half and the second half of the event. Also
noticeable is the very slim probability of hypopnea prediction
by the WaveNet model for both central and mixed apneas. For
the majority, our model does identify mixed apnea as obstructive
apnea after smoothing, which is explained in part by our training
method (i.e. combining these apnea types). Further research is
required to see if the model is able to accurately discriminate
mixed apnea from other apnea types. However, the ability of our
WaveNet model to predict respiratory events for each second
could provide clinicians with valuable additional phenotype
information on each of the event types.

It is possible that valuable information was lost due to down
sampling during preprocessing our data. However, the low pass
filter of 10 Hz used for down sampling our signals was not
expected to remove significant event characteristics that limit
us in identifying apneas. Regular breathing for adults normally
ranges between approximately 0.2–0.3 Hz.

Predicting for each second provides the smallest time resolu-
tion of our model. Reducing the rate at which the algorithm
provides results can be achieved by aggregating predictions
from consecutive time steps, such as taking the most severe
form of respiratory event. This is one of the possible alternative
approaches to generate events with a duration of 10 seconds or
more and may yield a better performance.

Besides a high accuracy, a metric that is affected by class
imbalance, our model also showed high AUC values for ROC
(0.93), PR (0.71), and F1-score (0.67). This means the model not
only has an excellent agreement in sensitivity and specificity but
also has a clinically acceptable precision in specific situations,
similar to the use of home sleep apnea testing, where tolerance
to especially false negatives is required [39]–[41]. We have
included the F1 score and the AUCPR, as such performance
metrics are not influenced by the imbalance of negative-positive
classes but rather by sensitivity and precision of the positive
class. The low standard deviation between the 5 folds of cross-
validation (AUCROC and AUCPR mean and std of 92 ± 0.5 and
71 ± 1.2) emphasizes the robustness of our model on a large
dataset.

In manual analysis, experts learn to implicitly visually dis-
count artifacts. Similarly, for the automated analysis, rather than
designing algorithms by hand to explicitly address this issue,
we took a data driven approach, i.e. presenting a large number
of labeled examples including ones with artifacts present, and
allowed the model to learn (implicitly) to discount artifacts.
This is possible for two reasons: (1) The MGH dataset is very
large; (2) deep neural network models, like the one used in the
manuscript, are very flexible. Thus, given sufficient data, deep
neural network models can often learn to perform challenging
pattern recognition tasks at a level that matches human experts.
Our results show that this indeed was the case.

Most approaches found in the literature used different sensors
to detect respiratory events. Some have shown slightly higher
performances, although performance comparisons are difficult
given the different datasets and evaluation methods. To our
knowledge, our model showed better results with respect to
other methods using a single respiratory effort belt and is the
only model that shows that additional respiratory event class
discrimination is possible based on respiratory effort only.

An advantage of using an effort belt to assess apnea is the non-
invasive application. This becomes very relevant when assessing
respiratory stability and instability/events in intensive care or
environmentally hostile conditions. Using limited resources –
such as a respiratory effort belt – to assess respiratory abnor-
malities can be successfully applied in combination with other
simple and small sensors necessary for monitoring patients in
diverse clinical situations. Patients receiving breathing aid using
CPAP are eligible for event detection. The number of patients
included in our research is larger than previous reports in the
literature. This, in combination with limited preprocessing and
without the use of any human-engineered features, emphasizes
the robustness of our proposed approach.

Future work focuses on the design of a completely automated
comprehensive sleep scoring system that combines automated
respiratory event analysis with sleep staging, limb movement
detection, and the identification of spontaneous arousals.

V. CONCLUSION

A neural network approach to analyzing typical respiratory
events during sleep based on a single respiratory measurement
is described. Our model included dilated convolutions to allow
their receptive fields to grow exponentially with depth, which
is important to model the long-range temporal dependencies in
respiration signals. Using this model, we obtained a comparable
performance with respect to literature while using a minimally
invasive methodology. Differentiation of event types is more
difficult and may reflect in part the complexity of human res-
piratory output and some degree of arbitrariness in the clinical
thresholds and criteria used during manual annotation. The use
of a respiratory effort belt at the abdomen for sleep apnea
analysis bears the advantage of wide implementation options
ranging from acute care settings to wearable devices for home
usage. Important first steps were obtained in automated apnea
detection with limited resources, creating new sleep assessment
opportunities applicable to the clinical setting.
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