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OBJECTIVES: Delirium is a common and frequently underdiagnosed complication 
in acutely hospitalized patients, and its severity is associated with worse clinical 
outcomes. We propose a physiologically based method to quantify delirium se-
verity as a tool that can help close this diagnostic gap: the Electroencephalographic 
Confusion Assessment Method Severity Score (E-CAM-S).

DESIGN: Retrospective cohort study.

SETTING: Single-center tertiary academic medical center.

PATIENTS: Three-hundred seventy-three adult patients undergoing electro-
encephalography to evaluate altered mental status between August 2015 and 
December 2019.

INTERVENTIONS: None.

MEASUREMENTS AND MAIN RESULTS: We developed the E-CAM-S based on 
a learning-to-rank machine learning model of forehead electroencephalography sig-
nals. Clinical delirium severity was assessed using the Confusion Assessment Method 
Severity (CAM-S). We compared associations of E-CAM-S and CAM-S with hospital 
length of stay and inhospital mortality. E-CAM-S correlated with clinical CAM-S (R = 
0.67; p < 0.0001). For the overall cohort, E-CAM-S and CAM-S were similar in their 
strength of association with hospital length of stay (correlation = 0.31 vs 0.41, re-
spectively; p = 0.082) and inhospital mortality (area under the curve = 0.77 vs 0.81;  
p = 0.310). Even when restricted to noncomatose patients, E-CAM-S remained sta-
tistically similar to CAM-S in its association with length of stay (correlation = 0.37 
vs 0.42, respectively; p = 0.188) and inhospital mortality (area under the curve = 
0.83 vs 0.74; p = 0.112). In addition to previously appreciated spectral features, the 
machine learning framework identified variability in multiple measures over time as 
important features in electroencephalography-based prediction of delirium severity.

CONCLUSIONS: The E-CAM-S is an automated, physiologic measure of de-
lirium severity that predicts clinical outcomes with a level of performance compa-
rable to conventional interview-based clinical assessment.

KEY WORDS: clinical outcomes; delirium severity; electroencephalography; 
machine learning

Delirium is an acute and fluctuating disturbance of consciousness (1), 
common in hospitalized patients across many medical specialties (1, 
2). Delirium is associated with worse clinical outcomes (3, 4), including 

increased length of stay (LOS), worse functional outcomes as assessed by the 
Glasgow Outcome Scale, and increased mortality (5). Nevertheless, delirium re-
mains largely underdiagnosed (6, 7). Increasing evidence shows that not only the 
presence of delirium but also its severity are associated with worse prognosis (8).  
Measuring delirium severity is important for assessing prognosis, monitoring re-
sponse to treatment, and anticipating the burden of care for patients both during 
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and after hospitalization. Currently, delirium severity is 
primarily assessed using clinical tools, but these involve 
intermittent and subjective evaluation of a dynamic, 
complex condition and can generate disagreement 
among experts (9). An automated method that quanti-
fies the presence and severity of delirium directly based 
on assessment of brain physiology could enable the de-
velopment of more effective treatments and prevention 
strategies for delirium (10).

Early studies showed that qualitative features of  elec-
troencephalography (EEG) data are associated with 
delirium presence (11, 12) and severity (13, 14). EEG 
slowing, an increase of delta (1–4 Hz) and/or theta power 
(4–8 Hz) or a decrease of alpha power (8–12 Hz), corre-
lates with the presence of delirium across various types 
of delirium presentations (5, 11, 15). In current practice, 
EEGs are analyzed using visual interpretation by clinical 
experts rather than quantitative analysis. Limitations of 
visual EEG interpretation include interrater variability 
and the use of only a small number of relatively simple 
descriptive features, typically scored for their presence or 
absence. An automated method able to provide a quanti-
tative assessment of the degree of EEG abnormality may 
provide better monitoring of delirium severity. Several 
prior studies address the potential of quantitative EEG 
analysis for delirium detection. Numan et al (16) showed 
that delirium could be detected using a single slowing 
parameter from a single EEG channel. Shinozaki et al 
(17) showed that a bispectral index EEG score was more 
strongly correlated with mortality than clinical delirium 
status. These findings suggest the potential of using sim-
plified EEGs for routine screening purposes.

Here, we present the EEG Confusion Assessment 
Method Severity (E-CAM-S) score, an automated 
physiologic method for assessing the presence and se-
verity of delirium using quantitative EEG in a large and 
heterogeneous patient population. We further evaluate 
which quantitative EEG features are most strongly as-
sociated with delirium severity. Last, we investigate 
whether the E-CAM-S is an independent predictor of 
important clinical outcomes, including hospital LOS 
and inhospital mortality.

MATERIALS AND METHODS

Study Setting and Participants

We conducted a single-center, retrospective, observa-
tional cohort study of adult inpatients who underwent 

EEG monitoring as a part of routine care at Massachusetts 
General Hospital between August 2015 and December 
2019. Patients were excluded if they had a history of de-
mentia, other intellectual disability, deafness, aphasia, or 
were non-English speaking. The study was conducted 
under a protocol (No. 2012P001929) approved by the 
Institutional Review Board using a waiver of written in-
formed consent.

Clinical Data

Delirium presence was assessed using the CAM short 
form (18). Delirium severity was assessed using the 
Confusion Assessment Method Severity (CAM-S) 
(19) (short form), which assigns a score between 0 and 
7 (for details, see Supplemental Digital Content 1, 
http://links.lww.com/CCM/G696). Comatose patients 
(Richmond Agitation-Sedation Scale [RASS] score 
of –4 or –5) were assigned a CAM-S score of 7 (20, 
21); however, all analyses were performed on both 
the entire cohort (nondelirious, delirious, and coma-
tose patients) and after excluding comatose patients. 
LOS, inhospital mortality, and Charlson Comorbidity 
Index (CCI) (22) were extracted and calculated from 
the medical record.

EEG Recording and Preprocessing

We calculated the E-CAM-S using only four frontal EEG 
channels, as forehead electrodes are amenable to appli-
cation with minimal technical experience. These chan-
nels were: Fp1–Fp2, Fp1–F7, Fp2–F8, F7–F8. Details of 
EEG signal preprocessing are in Supplemental Digital 
Content 1 (http://links.lww.com/CCM/G696).

Feature Extraction, Model Training, and Cross 
Validation

From each 6-second epoch, we extracted 298 features 
(summarized in Supplemental Table 1, http://links.lww.
com/CCM/G696) (23, 24). We used 10-fold external 
cross validation (ECV) to evaluate model performance 
(Supplemental Fig. 3, http://links.lww.com/CCM/
G696). Within each fold, we split data into training and 
testing data at the patient level, with 90% of EEGs (n = 
336) used for training and 10% (n = 37) for testing. For 
each fold, we fit the model (including feature selection) 
only on the training data and measure model perfor-
mance only on the held-out test data. In this process, 
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each subject ends up being used once in testing and 
nine times in training. The choice of 10 for the number 
of folds in ECV is widely accepted for developing and 
evaluating machine learning models, as it achieves a fa-
vorable bias-variance trade-off (25, 26). Additional tech-
nical details about ECV are provided in Supplemental 
Digital Content 1 (http://links.lww.com/CCM/G696).

For feature selection during model training, we used 
a two-step approach of: 1) selecting the top k-features 
that showed the strongest Spearman correlation with 
the CAM-S score on the training data and 2) fitting 
a least absolute shrinkage and selection operator 
(LASSO)-penalized Learning-to-Rank (LTR) ordinal 
regression machine learning model (27) (described 
further below). We selected the values k and the value 
of the LASSO penalty parameter value using internal 
cross validation. Technical details are provided in 
Supplemental Digital Content 1 (http://links.lww.com/
CCM/G696).

We created the E-CAM-S by training a LTR ordinal 
regression machine learning model (27) that attempts 
to produce scores (between 0 and 1) correlated with 
the clinical CAM-S score (0–7). The distribution of 
clinically assessed delirium severity scores in the en-
tire cohort and in the noncomatose subset is shown in 
Supplemental Figure 1 (http://links.lww.com/CCM/
G696). Technical details are in Supplemental Digital 
Content 1 (http://links.lww.com/CCM/G696).

Association of E-CAM-S With Mortality  
and Hospital Length of Stay

We evaluated the association of E-CAM-S scores with 
inhospital mortality using multivariable logistic re-
gression, including age, sex, and CCI as additional 
covariates. Age, CAM-S, and CCI were z normalized 
prior to model fitting. We assessed association with 
hospital LOS using multivariable linear regression 
with log-transformed LOS as the dependent variable. 
We performed both linear and logistic regression with 
four models: without any delirium information, with 
E-CAM-S scores included, with clinically assessed 
CAM-S scores, and with both E-CAM-S and CAM-S 
scores. Results are reported as Spearman correlations 
and area under the receiver operating characteristic 
curve (AUROC). We further compared the point-
biserial correlation (PBC) between mortality and 
E-CAM-S and CAM-S.

Statistical Reporting

Statistical reporting conventions are described in 
Supplemental Digital Content 1 (http://links.lww.
com/CCM/G696). To evaluate the correlation between 
E-CAM-S and CAM-S, we used Spearman correla-
tion coefficients. To evaluate the ability of E-CAM-S 
to discriminate between patients with versus without 
delirium, we used AUROC. We also compared the 
E-CAM-S with a previously published method (16) for 
assessing delirium based on the EEG, using Spearman 
correlations with the CAM-S and AUROC for predict-
ing delirium presence as evaluation metrics.

RESULTS

Patient Characteristics

A total of 403 patients were enrolled in our study. Of 
these patients, 30 were subsequently excluded due 
to technical difficulties with the EEG, a diagnosis 
of dementia, missing data or because the time in-
terval between the clinical and EEG test time was 
too large. Of the 373 patients analyzed, 252 (67.6%) 
screened positive for delirium by the CAM (67.6% 
of total 373 patients), and 122 were comatose (32.7% 
of total 373 patients). Patients with delirium were 
generally more ill and had worse clinical outcomes 
than patients without delirium (Table 1), including 
longer LOS and higher rates of inhospital mortality. 
Patients with delirium were older, had lower RASS 
scores, and higher CAM-S and CCI. The nonco-
matose subset differed from the entire cohort in 
terms of having lower CAM-S and inhospital mor-
tality rates, higher RASS, and shorter hospital LOS 
(Table 1; and Supplemental Fig. 2, http://links.lww.
com/CCM/G696).

Physiologic Measurement of Delirium Severity: 
The E-CAM-S

Example EEGs of patients with low, moderate, and 
high CAM-S scores are shown in Figure 1. Patients 
with higher delirium severity exhibited qualitatively 
more slowing of the EEG. EEGs were used to generate 
1,192 extracted features, from which machine learning 
computed a corresponding E-CAM-S score, to reflect 
delirium severity. E-CAM-S scores successfully corre-
lated with clinical CAM-S scores (R = 0.68; p < 0.001) 
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TABLE 1. 
Patient Characteristics Based on Confusion Assessment Method Defined Delirium 
and Differences for the Entire Cohort (Including Nondelirious, Delirious, and Comatose 
Patients) and Noncomatose Subset

Quantitative Data,  
Median (IQR)

No Delirium  
(n = 121)

Delirium  
(n = 252) p (Rank-Sum)

Age (yr) 54 (40–68) 63 (54–73) 0.0021

Charlson Comorbidity Index 3 (1–5) 4 (3–6) < 0.0001

RASS score (–5 to +4) 0 (0–0) –3 (–5 to –1) < 0.0001

Delirium severity (CAM-S) 1 (0–2) 7 (5–7) < 0.0001

Length of stay (d) 6 (4–11) 15 (8–25) < 0.0001

Categorical Data, % (n) No Delirium (n = 121) Delirium (n = 252) p (χ2)

Gender (Female) 42.1% (n = 51) 42.5% (n = 107) 0.8877

Hospital Mortality 0.8% (n = 1) 31.7% (n = 80) < 0.0001

Quantitative Data, Median (IQR) All Patients (n = 373) Noncomatose Subset (n = 251) p (Rank-Sum)

Age (yr) 61 (49–72) 61 (50–72) 0.9070

Charlson Comorbidity Index 4 (2–6) 4 (2–5) 0.0630

RASS score (–5 to +4) –1 (–4 to 0) 0 (–1 to 0) < 0.0001

Delirium severity (CAM-S) 6 (2–7) 4 (2–6) < 0.0001

Length of stay (d) 11 (6–21) 9 (5–16) 0.0114

Categorical Data, % (n) All Patients (n = 373) Noncomatose Subset (n = 251) p (χ2)

Gender (female) 41.6% (n = 157) 43.8% (n = 110) 0.6678

Hospital mortality 21.7% (n = 81) 6.8% (n = 17) < 0.0001

CAM-S = Confusion Assessment Method Severity, IQR = interquartile range, RASS = Richmond Agitation-Sedation Scale.

(Fig. 2). The correlation between E-CAM-S and CAM-S 
scores was lower but still significant when limiting the 
analysis only to noncomatose patients (R = 0.52; p < 
0.001; Supplemental Table 2 and Supplemental Fig. 
4, http://links.lww.com/CCM/G696).

EEG Features Predictive of Delirium Severity

We next explored which types of EEG features were 
most informative in predicting delirium severity. 
Machine learning based feature selection resulted in 
a retained subset of 53 features using the entire pop-
ulation and 23 features for the noncomatose subset. 
The top nine most important features are shown in 
Supplemental Figure 5 (http://links.lww.com/CCM/
G696). sds across epochs were primarily selected in-
stead of minimum, maximum, and average values. 
Frequency features based on delta, theta, and alpha ac-
tivity were also strong contributors to the E-CAM-S 
score. Other important features reflected differences in 

amplitude, variance, and regularity of the EEG signal 
in the time domain.

Comparison of E-CAM-S to Assessment  
Using Single Slowing Parameter

A previous study (16) proposed a method to detect de-
lirium using a one-channel EEG recording and a single 
measure of slowing, either relative delta power (1–4 Hz) 
or relative power from 1 to 6 Hz. Albeit in a different 
context, we compared how well these features correlate 
with CAM-S scores compared with the E-CAM-S. The 
results (Table  2) show that the E-CAM-S correlates 
more strongly with CAM-S than either the relative 
delta power (p < 0.001) or the power from 1 to 6 Hz  
(p < 0.001) under these conditions. In terms of predict-
ing delirium presence, E-CAM-S also performed bet-
ter than power from 1 to 6 Hz (p = 0.030) and similarly 
to relative delta power (p = 0.070) in this context.
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Association E-CAM-S With Clinical Outcomes

We next investigated the association of E-CAM-S 
with relevant clinical outcomes using a multivariable 
regression model including the E-CAM-S and other 
covariates (age, sex, and CCI).

Association With Hospital Length of Stay. For the 
entire cohort, E-CAM-S was significantly associated 
with hospital LOS after adjusting for age, sex, and CCI 

(Table  3). This association was similar to that of the 
CAM-S score (correlation with LOS: E-CAM-S, 0.33; 
CAM-S, 0.41; p = 0.082). Models with E-CAM-S and 
CAM-S scores also showed comparable associations with 
LOS in the noncomatose subset (correlation: 0.37 vs 0.42; 
p = 0.310) (Table 3). The correlation of a combined model 
using E-CAM-S, CAM-S, age, sex, and CCI was 0.43 
(0.34–0.51) and 046 (0.34–0.56) for the entire cohort and 
noncomatose subset, respectively (Table 3). This is similar 
to and with CI containing the correlation values obtained 
above for models using only CAM-S or E-CAM-S alone.

Association With Inhospital Mortality. For the en-
tire cohort, E-CAM-S was associated with inhospital 
mortality after adjusting for age, sex, and CCI (Table 3). 
The strength of this association was similar to that of 
CAM-S (AUROC: E-CAM-S 0.77 [0.72–0.82] CAM-S 
0.81 [0.75–0.85]; p = 0.188). Models with E-CAM-S 
and CAM-S scores also showed similar age, sex, and 
CCI adjusted associations with mortality for the non-
comatose subset (AUROC: = 0.83 [0.76–0.90] vs 0.74 
[0.62–0.84]; p = 0.112) (Table 3).

The AUROC of a combined model using E-CAM-S, 
CAM-S, age, sex, and CCI, was 0.80 (0.76–0.86), similar 
to and with CI containing the AUROC values obtained 
above for models using only CAM-S or E-CAM-S 
alone (Table  3). The PBC between mortality and the 

Figure 1. Electroencephalography (EEG) patterns vs. delirium severity. Examples of three EEG recordings of patients with low (A), moderate 
(B), and high (C) Confusion Assessment Method Severity (CAM-S) scores, along with their corresponding Electroencephalography Confusion 
Assessment Method Severity (E-CAM-S) scores. EEGs were processed using a notch filter at 60 Hz and a bandpass filter from 0.5 to 30 Hz.

Figure 2. Scatter plot of electroencephalography-based 
delirium severity prediction (Electroencephalography Confusion 
Assessment Method Severity [E-CAM-S]) versus Confusion 
Assessment Method Severity (CAM-S) scores. The green line 
represents a fitted regression line with 95% CI.
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delirium scores showed overlapping CIs (E-CAM-S, 
0.36 [0.28–0.45]; CAM-S, 0.40 [0.34–0.46]).

DISCUSSION

In this study, we developed an automated physiologi-
cally based method to measure delirium severity using 
EEG, the E-CAM-S score. Our results show that the 
E-CAM-S, based on signals from four frontal EEG 
leads, reliably quantifies delirium severity and is inde-
pendently associated with hospital LOS and inhospital 
mortality across a wide range of acutely hospitalized 
adults. We also found that the strengths of the associa-
tions of clinical CAM-S and the E-CAM-S with clin-
ical outcomes are comparable. These results establish 
E-CAM-S as a promising tool for physiologically based 
monitoring of delirium.

Our model showed strong performance for meas-
uring delirium severity with the use of only four frontal 
EEG leads. We compared our results to a reduced EEG 
method used in a previous study, based on relative power 
in lower frequencies (either 1–4 Hz or 1–6 Hz) (16).  
E-CAM-S performed at least as well in this specific 
context, suggesting that using multiple features may 
be useful for classifying a patient’s level of delirium se-
verity. However, our method is not completely compa-
rable to the previous study, which used a 1-minute EEG 
recording from different electrodes to detect the binary 
presence or absence of delirium. In contrast, we used a 
longer EEG recording timeframe from forehead elec-
trodes to predict ordinal delirium severity.

Regression analysis with our predicted scores and 
potential covariates showed that both clinical CAM-S 
and EEG-based E-CAM-S assessment of delirium had 

TABLE 3. 
Prediction Performance of Various Multivariable Models for Predicting the Inhospital 
Mortality and Logarithm of Length of Stay for the Entire Cohort or the Noncomatose Subset

Model 

Log LOS 
All Patients 

(Correlation)

Mortality All 
Patients 

 (AUROC)

Log LOS 
Noncomatose 

Patients 
(Correlation)

Mortality 
Noncomatose 

Patients 
(AUROC)

Baseline model 0.04 (–0.15 to 0.18) 0.65 (0.57–0.71) 0.16 (–0.02 to 0.30) 0.64 (0.52–0.75)

Baseline model + CAM-S 0.41 (0.32–0.50) 0.81 (0.75–0.85) 0.42 (0.30–0.53) 0.74 (0.62–0.84)

Baseline model + E-CAM-S 0.33 (0.23–0.44) 0.77 (0.72–0.82) 0.37 (0.23–0.48) 0.83 (0.76–0.90)

Baseline model + CAM-S  
+ E-CAM-S

0.43 (0.33–0.51) 0.80 (0.76–0.86) 0.46 (0.34–0.56) 0.82 (0.76–0.89)

AUROC = area under the receiver operating characteristic curve, CAM-S = Confusion Assessment Method Severity,  
E-CAM-S = Electroencephalography Confusion Assessment Method Severity, log LOS = logarithm of length of stay.
The baseline model included age, sex, and Charlson Comorbidity Index, onto which was added either the clinical delirium severity 
measure (CAM-S) or electroencephalography-based delirium severity measure (E-CAM-S). Data are reported as median (95% CIs).

TABLE 2. 
Association of Delirium Severity and Delirium Presence With Either the 
Electroencephalography Confusion Assessment Method Severity or Relative Power  
in Lower Frequency Bands

Evaluation Metrics

Electroencephalography 
Confusion Assessment 

Method Severity
Relative 1–4 Hz 

Power
Relative 1–6 Hz 

Power

Correlation (R) with delirium severity (Confusion 
Assessment Method Severity)

0.68 (0.64–0.73) 0.33 (0.24–0.42) 0.36 (0.27–0.45)

Area under the receiver operating characteristic 
curve for nondelirious vs delirious

0.70 (0.64–0.76) 0.65 (0.59–0.70) 0.63 (0.58–0.69)

Data are reported as median (95% CIs).
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strong associations with clinical outcomes, that is, 
inhospital mortality and length of hospital stay. Both 
CAM-S and E-CAM-S show similarly strong asso-
ciations with LOS and inhospital mortality, reflecting 
that patients with higher delirium severity stay longer 
in the hospital and experience a higher probability of 
death, in keeping with previous studies (5). Regression 
analysis with a combination of age, sex, CCI, and both 
CAM-S + E-CAM-S did not show a stronger associ-
ation with clinical outcomes. E-CAM-S and CAM-S 
also showed overlapping PBCs, suggesting that the 
associations of E-CAM-S and CAM-S with mortality 
are similar. Thus, E-CAM-S appears to capture in-
formation regarding mortality risk similar to CAM-S 
rather than complementary.

Our results also provide insights into EEG features 
associated with delirium severity and inhospital mor-
tality. In agreement with prior research (6, 10), our 
results indicate that spectral content in the delta, theta, 
and alpha bands are important EEG findings in de-
lirium. Distinct from prior studies, our results highlight 
a new defining EEG feature of delirium: variability over 
time. In the E-CAM-S, the majority of selected features 
were based on the sd across epochs. This suggests that 
variation over time (between epochs) is more related to 
delirium severity than the average, minimum, or max-
imum values across epochs. This phenomenon might 
be related to the clinical observation that delirium can 
fluctuate over time.

While our results demonstrate successful auto-
mated detection of delirium severity, future steps may 
enhance EEG-based delirium measurement. For ex-
ample, further studies may benefit from deep learning 
models, which often outperform conventional machine 
learning algorithms. Qualitative EEG analysis may also 
prove complementary to quantitative EEG analysis, be-
cause qualitative EEG may include features potentially 
missed by current quantitative methods. Further re-
search should investigate to what extent important EEG 
features will be missed with quantitative EEG analysis. 
Additionally, we are planning a prospective study to 
validate the efficacy of E-CAM-S in quantifying de-
lirium and to further clarify its prognostic value.

Our work has important limitations. Clinical 
CAM-S assessments were performed by multiple pro-
viders, which may have introduced interrater varia-
bility. Second, our model is best described as prognostic 
rather than mechanistic. The physiologic interpretation 

of the features selected by the model remains partly un-
clear, and more research to investigate the exact mean-
ing and relationship between these features should be 
performed before clinical adoption is possible. Third, 
we performed our analysis on a heterogeneous patient 
population with various causes of altered mental status. 
Further research could be done to study different sub-
sets of patients to relate selected features to underlying 
diseases. Fourth, we limited our analysis to four frontal 
EEG leads; additional EEG leads might improve per-
formance. However, requiring multiple leads would 
reduce usability and impede our goal of achieving a 
simple, user-friendly method for rapid delirium de-
tection and screening purposes. Fifth, our study was 
conducted at a single center. To see if our results can 
be generalized, external validation is required. Sixth, in 
this study, we assessed variability but did not include 
EEG reactivity. Studies have shown that absence of 
EEG reactivity is associated with later development of 
delirium among ICU patients with sepsis (28), which 
raises the possibility that EEG reactivity could enhance 
the performance of the E-CAM-S. However, our goal 
was to create an automated physiologic test that does 
not require trained human involvement, and assess-
ment of EEG reactivity would require a standardized 
examination performed by a human operator. Studies 
of EEG reactivity have highlighted variability between 
experts in EEG reactivity testing among hospitals (29), 
which further highlights the difficulty of utilizing reac-
tivity in a widespread, standardized format, even with 
trained individuals. Seventh, E-CAM-S does not take 
into account the effects of concurrent drugs in a direct 
way. Drugs (e.g., benzodiazepines, anesthetics, opioids) 
are important contributors to delirium and, in some 
cases, have large effects on both mental status and EEG 
patterns. However, delirium rating scales (e.g., CAM-S) 
usually do not address the cause of delirium; they only 
quantify it. We followed the same approach in devel-
oping E-CAM-S. We feel that this approach is appro-
priate, as our main goal was to quantify the degree of 
abnormality in a patient’s brain activity, regardless of 
the underlying cause. Nevertheless, the same elevated 
E-CAM-S score, like a clinical finding that a patient is 
in coma, may not be concerning if we know a patient is 
receiving anesthetic drugs but may be alarming in the 
absence of drugs. Thus, future work on the association 
between E-CAM-S and outcomes should account for 
the presence and type of drugs. Eighth, Figure 2 shows 
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that E-CAM-S and CAM-S are correlated, but the re-
lationship shows considerable spread. However, this 
does not necessarily mean that those cases are all false 
positives and negatives. CAM-S is not a “gold standard,” 
and our primary goal is not to reproduce CAM-S but to 
create a severity measure that is physiologic and easy 
and reproducible. The E-CAM-S provides an objec-
tive assessment of severity of delirium with comparable 
clinical prognostic value as CAM-S, given their cor-
relations with mortality. Nevertheless, when adapting 
E-CAM-S into clinical practice, it will be important to 
educate clinicians that E-CAM-S values (like a normal 
CAM-S value) can be falsely negative and must there-
fore be interpreted within the full clinical context of 
other clinical data. Last, we acknowledge that the avail-
ability of EEG in many hospitals does not currently 
match the ubiquity of delirium, because of the inten-
sive clinical resources required to apply and interpret 
EEG. However, we anticipate that EEG will continue 
to become more widely available through advances in 
hardware that simplify data collection. Frontal EEG is 
increasingly accessible in a range of clinical practices, 
including technologies such as EEG headbands and dry 
EEG electrodes (30).

While standard EEG is not suitable for mass screen-
ing due to its size and the required expertise for place-
ment and interpretation, simplified EEG devices show 
potential for automatic detection and routine screen-
ing of a patient’s level of delirium severity. We will only 
be able to use such hardware through accompanying 
innovations in software, including algorithms similar 
to ours, that help streamline clinical interpretation. 
Even without the adoption of new EEG recording 
devices, we have demonstrated clinical value with only 
four standard frontal leads, which often can be applied 
without technician assistance.

CONCLUSIONS

The E-CAM-S automatically quantifies delirium se-
verity in patients with a variety of delirium presenta-
tions. The physiologically derived E-CAM-S and the 
manually assessed CAM-S show comparable strengths 
of associations with inhospital mortality and hospital 
LOS.
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