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The need to separate the wheat from the chaff in medical informatics 
Introducing a comprehensive checklist for the (self)-assessment of medical AI studies  

A R T I C L E  I N F O   
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A B S T R A C T   

This editorial aims to contribute to the current debate about the quality of studies that apply machine learning 
(ML) methodologies to medical data to extract value from them and provide clinicians with viable and useful 
tools supporting everyday care practices. We propose a practical checklist to help authors to self assess the 
quality of their contribution and to help reviewers to recognize and appreciate high-quality medical ML studies 
by distinguishing them from the mere application of ML techniques to medical data.   

As widely known, machine learning (ML) models are beginning to 
demonstrate early successes in clinical applications [1–3]. Studies that 
compare the performance of these models and human physicians found 
that models allegedly perform equally well in many diagnostic and 
prognostic tasks [4,5]. However, relatively few studies present exter-
nally validated results [6–8], and most of them failed to adhere to 
minimal reporting standards [9,10]. In this respect, poor reporting is 
one of the main factors preventing studies from being replicated in other 
settings [11], which undermines the interpretation of the scores that 
authors report to estimate the diagnostic accuracy of the model on un-
seen data. 

The “reproducibility crisis”, which some observers report affecting 
biomedical science [12] at an increasing extent, also affects also medical 
informatics [13], artificial intelligence [14] and its application to 
medicine [15]. To quote a oft-cited work by Ioannidis [16], which could 
be seen as a precursor to the current debate on reproducibility in science 
and medicine, we know that “most published accuracy scores are false” 
or, more prosaically, “most published studies applying ML techniques to 
medicine are simply not valid”. This assertion looks like the notorious 
elephant in the room [17,18] of medical informatics that few people 
want to escort out of the room. 

The sheer truth is that practicing “Medical ML” is different from 
merely applying ML to medical data. Applying ML to medical data is 
relatively easy, once medical data are available. And they are: an 
increasing number of medical datasets have been made available to 
researchers and shared in public repositories in recent times: for 
example, HealthData1 is a U.S. site that collects data from agencies from 
the U.S. Department of Health and Human Services as well as other 
centers and counts to date more than 4500 datasets that can be used to 
train ML models on disparate medical tasks; MIMIC-III [19] is a freely 
accessible database with more than 60,000 intensive care unit admis-
sions, that has been mentioned in more than 1400 articles indexed in 
Scopus; OpenfMRI [20] includes 95 datasets of magnetic resonance 

imaging (MRI) from more than 3000 subjects, while Deep Lesion [21] is a 
U.S. National Institutes of Health initiative to make more than 32,000 
lesions in CT images, from 4000 unique patients, available to foster 
research, better diagnostics and training. Moreover, on Kaggle and 
Healthcare.ai, which are popular sites visited by thousands of data sci-
ence practitioners every day, ML researchers can find countless datasets 
that make training a ML model to predict some target variable a child’s 
play. However, few of these datasets would be considered high quality 
from a clinical point of view [6,22] and very seldom can we know how 
these data were produced (e.g., by involving how many experts, what 
their certification is, the conditions in which they performed their rat-
ings), as a guarantee of their reliability at face level [18]. 

Thus, mere data availability cannot be a sufficient condition to 
perform valid research in the field of medical ML: being at the inter-
section between data science, computer science and medicine, this 
subfield differs from the mere application of ML techniques to medical 
data. Medical ML is programmatically aimed at developing tools that 
medical doctors, nurses and other healthcare practitioners can use in 
their daily practice to improve the appropriateness, safety and effec-
tiveness of their decisions, and ultimately the health outcomes of their 
patients [23]: thus, actual use and assessment are part and parcel of 
medical ML. This ambitious objective justifies efforts for which data 
scientists, who are increasingly focused on developing methods and 
techniques that apply to “big data” (which are impossible to vet for 
actual reliability in order to gain marginal, if statistically significant at 
all, improvements over the state of the art [24]), are not usually inter-
ested in devoting themselves to. 

Conversely, practicing medical ML often means dealing with rela-
tively small datasets [25] (much smaller than what would be required to 
produce generalizable models using deep learning, or other equally 
complex approaches [26]), which are collected from real-world practice 
by vetting them for clinical meaning, and pose challenges [27] that are 
hardly, if ever, addressed in computer science laboratories: observer 

1 http://www.healthdata.org/. 
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variability [28]; pre-analytical, analytical [29] and biological variability 
[30]; class imbalance [31]; small cardinality [32] (hence the consequent 
risk of overfitting); relatively high missing rate [33]; feature collinearity 
[34]; and any heterogeneity that may break the assumption of inde-
pendence and identical distribution of data [35] or affect the variability 
of results [36]. 

Under the pressure of funding policies and assessment exercises that 
foster the “publish or perish” environment, medical informatics jour-
nals, and the IJMEDI is no exception, are flooded with contributions that 
do not address any of the problems that were previously mentioned, and 
that mechanically apply procedures which, by their nature, lend them-
selves to the growing trend toward automation (cf. autoML [37]). The 
same situation occurs in more technology- and application-oriented 
journals, which face similar difficulties in curbing a vast amount of ar-
ticles that communities of peers find increasingly difficult to filter out, 
contributing to unintentionally creating precedents in the literature, 
which inspire works of similar superficiality [38]. As public opinion and 
many practitioners seem to be dazzled by discourses regarding the 
quality of instruments that do not extend beyond reports on their 
theoretical error rate (often not considering class imbalance or sepa-
rating training data from validation data) [38], some scientific societies 
have recently suggested more sensible guidelines for assessing the 
quality, validity and usefulness of certain instruments in the medical 
field, and report on them. Recent collaborative efforts for the definition 
of guidelines on the development and reporting of Medical AI systems, 
see also [39], include the SPIRIT-AI [40] and CONSORT-AI [41] for the 
design and reporting of clinical trials involving AI and ML systems, the 
MI-CLAIM [42] checklist for Medical AI, the WHO/ITU ML4H auditing 
framework [43,44] for artificial intelligence in healthcare, the PROBAST 
tool [45] to assess the bias and applicability of prediction models, or the 
TRIPOD statement [46] for reporting their main characteristics. To some 
extent, the availability of multiple guidelines, as well as their long 
production time (as of the writing of this manuscript the TRIPOD-AI 
extension, which was announced in 2019 [11,47], as well as the 
STARD-AI reporting guidelines [48], have not yet been officially pub-
lished), indicate the difficulty of convening on a minimum set of data 
that must be reported to make ML studies reproducible and their results 
reliable. 

In the light of the above partly overlapping and competing standards, 
we at the IJMEDI have considered the progress made by the recent 
proposals by the Journal of the Medical Informatics Association (JAMIA) 
[49], and by the BMJ Health & Care Informatics [25], a huge step for-
ward, especially for their practical value. We consider these contribu-
tions powerful tools to improve the quality of ML studies, as a positive 
side effect of improving the reporting practices of their authors, and a 
way to disseminate good development practices. For this reason, we 
took inspiration from these relevant contributions to propose an even 
more assessment-oriented checklist: the IJMEDI checklist for assessment 
of medical artificial intelligence based on machine learning; in this tool 
some aspects are made even more explicit and detailed than in similar 
proposals, the aspects that we deem more relevant to allow our associate 
editors and reviewers to discriminate between high-quality contribu-
tions and manuscripts that should be rejected because of failing to meet 
the high standards of a journal that is so committed to the sound eval-
uation of computational systems in healthcare settings. 

The following 30-item checklist (see Table 1), organized in 6 phases 
according to the CRISP-DM methodology [50], can be considered a 
practical guideline, for both reviewers and authors, to qualitatively 
assess the methodological soundness of a medical ML contribution and 
the reproducibility of its results. In the following list, each item repre-
sents a requirement and is associated with three possible options, for 
both authors (Not Applicable, Not Addressed – No, Addressed – Yes); 
and reviewers (Adequately addressed – OK, sufficient but improvable, 
minor revision needed – mR), inadequately addressed, major revision 
needed – MR). Items for which mR has been proposed can be interpreted 
as opportunities for due improvement; by contrast, items for which a MR 

Table 1 
Checklist for assessment of requirements and recommendations for sound 
medical ML contributions to the existing literature. NA: not applicable; mR: 
minor revisions needed; MR: major revisions needed. Items in bold indicate 
priority aspects to be considered. Items denoted with a § symbol are directly 
inspired by the MINIMAR guideline [49]. The section names for the checklist 
items are directly inspired by the CRISP-DM framework [50].  

Requirement Authors Reviewers  

NA No Yes OK mR MR 

Problem understanding 
1. Is the study population described, also 

in terms of inclusion/exclusion criteria 
(e.g., patients older than 18 tested for 
COVID-19; all inpatients hospitalized 
for 24 or more hours)? §

○ ○ ○ ○ ○ ○ 

2. Is the study design described? (e.g., 
retrospective, prospective, cross- 
sectional [51], observational, 
randomized control trial [52]) §

○ ○ ○ ○ ○ ○ 

3. Is the study setting described? (e.g., 
teaching tertiary hospital; primary care 
ambulatory, nursing home, medical 
laboratory, R&D laboratory) §

○ ○ ○ ○ ○ ○ 

4. Is the source of data described? (e.g., 
electronic specialty registry; laboratory 
information system; electronic health 
record; picture archiving and 
communication system) §

○ ○ ○ ○ ○ ○ 

5. Is the medical task reported? (e.g., 
diagnostic detection, diagnostic 
characterization, diagnostic staging, 
prognosis (on which endpoint), event 
prediction, risk stratification, 
anatomical structure segmentation, 
treatment selection and planning, 
monitoring) §

○ ○ ○ ○ ○ ○ 

6. Is the data collection process described, 
also in terms of setting-specific data 
collection strategies (e.g., whether 
body temperatures are measured only 
in the morning; whether some blood 
tests are performed only in light of a 
specific diagnostic hypothesis)? Any 
consideration about data quality is 
appreciated, e.g., in regard to 
completeness, plausibility, and 
robustness with respect to upcoding or 
downcoding practices 

○ ○ ○ ○ ○ ○  

Data understanding 
7. Are the subject demographics 

described in terms of  
1. average age (mean or median);  
2. age variability (standard deviation 

(SD) or inter-quartile range (IQR));  
3. gender breakdown (e.g., 55% female, 

44% male, 1% not reported); §
4. main comorbidities;  
5. ethnic group (e.g., Native American, 

Asian, South East Asian, African, 
African American, Hispanic, Native 
Hawaiian or Other Pacific Islander, 
European or American White);  

6. socioeconomic status? 

○ ○ ○ ○ ○ ○ 

8. If the task is supervised, is the gold 
standard described? (e.g., “100 
manually annotated clinical notes and 
pain scores recorded in EHR, Death, re- 
admission and International 
Classification of Disease (ICD) codes in 
discharge letters”). In particular, the 
authors should describe the process of 
ground truthing described in terms of:  

1. Number of annotators (raters) 
producing the labels; 

○ ○ ○ ○ ○ ○ 

(continued on next page) 
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Table 1 (continued ) 

Requirement Authors Reviewers  

NA No Yes OK mR MR  

2. Their profession and expertise (e.g., 
years from specialization or 
graduation);  

3. Particular instructions given to 
annotators for quality control (e.g., 
which data were discarded and why);  

4. Inter-rater agreement score (e.g., 
Alpha [53], Kappa [54], Rho [17]);  

5. Labelling technique (e.g., majority 
voting, Delphi method [55], consensus 
iteration). 

9. In the case of tabular data, are the 
features described (also in regard to 
how they were used in the model in 
terms of categories or transformation)? 
This description should be done for all, 
or, in the case that the features exceed 
20, for a significant subset of the most 
predictive features in the following 
terms: name, short description, type 
(nominal, ordinal, continuous), and  

1. If continuous: unit of measure, range 
(min, max), mean and standard 
deviation (or median and IQR). Violin 
plots of some relevant continuous 
features are appreciated. If data are 
hematochemical parameters, also 
mention the brand and model of the 
analyzer equipment.  

2. If nominal, all codes/values and their 
distribution. Feature transformation 
(e.g., one-hot encoding) should be re-
ported if applied. Any terminology 
standard should be explicitly 
mentioned (e.g., LOINC [56], ICD-11 
[57], SNOMED [58]) if applied. 

○ ○ ○ ○ ○ ○  

Data preparation 
10. Is outlier detection and analysis 

performed and reported? If the answer 
is yes, the definition of an outlier 
should be given and the techniques 
applied to manage outliers should be 
described (e.g., removal through 
application of an Isolation Forest 
model). 

○ ○ ○ ○ ○ ○ 

11. Is missing-value management 
described? This description should be 
reported in the following terms:  

1. The missing rate for each feature 
should be reported;  

2. The technique of imputation, if any, 
should be described, and reasons for 
its choice should be given. If the 
missing rate is higher than 10%, a 
reflection about the impact on the 
performance of a technique with 
respect to others would be appreciable 
[59]. 

○ ○ ○ ○ ○ ○ 

12. Is feature pre-processing performed 
and described? This description should 
be reported in terms of scaling 
transformations (e.g., normalization, 
standardization, log-transformation) or 
discretization procedures applied to 
continuous features, and encoding of 
categorical or ordinal variables (e.g., 
one-hot encoding, ordinal encoding). 

○ ○ ○ ○ ○ ○ 

13. Is data imbalance analysis and 
adjustment performed and reported? 
The authors should describe any 
imbalance in the data distribution, both 
in regard to the target (e.g., only 10% of 

○ ○ ○ ○ ○ ○  

Table 1 (continued ) 

Requirement Authors Reviewers  

NA No Yes OK mR MR 

the patients were affected by a given 
disease); and in regard to important 
predictive features (e.g., female 
patients accounted for less than 10% of 
the total cases). The authors should also 
report about any technique (if any) 
applied to adjust the above mentioned 
imbalances (e.g., under- or over- 
sampling, SMOTE).  

Modeling 
14. Is the model task reported? (e.g., 

binary classification, multi-class 
classification, multi-label classification, 
ordinal regression, continuous 
regression, clustering, dimensionality 
reduction, segmentation) §

○ ○ ○ ○ ○ ○ 

15. Is the model output specified? (e.g., 
disease positivity probability score, 
probability of infection within 5 days, 
postoperative 3-month pain scores) §

○ ○ ○ ○ ○ ○ 

16. Is the model architecture or type 
described? (e.g., SVM, Random Forest, 
Boosting, Logistic Regression, Nearest 
Neighbors, Convolutional Neural 
Network) 

○ ○ ○ ○ ○ ○  

Validation 
17. Is the data splitting [60] described (e. 

g., no data splitting;, k-fold 
cross-validation (CV); nested k-fold CV; 
repeated CV; bootstrap validation; 
leave-one-out CV; 80%/10%10% 
train/validation/test)? In the case of 
data splitting, the authors must 
explicitly state that splitting was 
performed before any pre-processing 
steps (e.g., normalization, 
standardization, missing value 
imputation, feature selection) or model 
construction steps (training, 
hyper-parameter optimization), so to 
avoid data leakage [61] and 
overfitting. 

○ ○ ○ ○ ○ ○ 

18. Is the model training and selection 
described? In particular, the training 
procedure, hyper-parameter 
optimization or model selection should 
be described in terms of  

1. Range of hyper-parameters [62];  
2. Method used to select the best hyper- 

parameter configuration (e.g., Hyper- 
parameter selection was performed 
through nested k-fold CV based grid 
search);  

3. Full specification of the hyper- 
parameters used to generate results 
[62];  

4. Procedure (if any) to limit over-fitting, 
in particular as related to the sample 
size [25]. 

○ ○ ○ ○ ○ ○ 

19. (classification models) Is the model 
calibration described? If the answer is 
yes, the Brier score should be reported, 
and a calibration plot should be 
presented [63] 

○ ○ ○ ○ ○ ○ 

20. Is the internal/internal-external 
model validation procedure described  
[60,64] (e.g., internal 10-fold CV, 
time-based cross-validation)? The 
authors should explicitly specify that 
the sets have been splitted before 
normalization, standardization and 
imputation, to avoid data leakage [61] 
(also refer to item 17 of this guideline). 

○ ○ ○ ○ ○ ○ 

(continued on next page) 
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Table 1 (continued ) 

Requirement Authors Reviewers  

NA No Yes OK mR MR 

If possible, the authors should also 
comment on the adequacy of the 
available sample size for model training 
and validation [65,25]. Moreover, the 
authors should try to choose the test set 
so that it is the most diverse with 
respect to the remainder of the sample  
[66] (w.r.t. some multivariate 
similarity function) and how this choice 
relates to conservative (and 
lower-bound) estimates of the model’s 
accuracy (and performance) 

21. Has the model been externally 
validated [67]? If the answer is yes, the 
characteristics of the external 
validation set(s) should be described. 
For instance, the authors could 
comment about the heterogeneity of 
the data with respect to the training set 
(e.g., degree of correspondence Ψ [66], 
Data Representativeness Criterion  
[68]) and the cardinality of the external 
sample [69]. If the performance on 
external datasets is found to be 
comparable with (or better than) that 
on training and internal datasets, the 
authors should provide some 
explanatory conjectures for why this 
happened (e.g., high heterogeneity of 
the training set, high homogeneity of 
the external dataset) 

○ ○ ○ ○ ○ ○ 

22. Are the main error-based metrics 
used?  

1. a. Classification performance should 
be reported in terms of: Accuracy, 
Balanced accuracy, Specificity, 
Sensitivity (recall), Area Under the 
Curve (if the positive condition is 
extremely rare – as in case of stroke 
events – authors could consider the 
“Area under the Precision-Recall 
Curve” [70]). Optionally also in terms 
of: positive and negative predictive 
value, F1 score, Matthew coefficient 
[71], F score of sensitivity and speci-
ficity, the full confusion matrix, Ham-
ming Loss (for multi-label 
classification), Jaccard Index (for 
multi-label classification).  

2. Regression performance should be 
reported in terms of: R2; Mean 
Absolute Error (MAE); Root Mean 
Square Error (RMSE); Mean Absolute 
Percentage Error (MAPE) or the Ratio 
between MAE (or RMSE) and SD (of 
the target);  

3. Clustering performance should be 
reported in terms of: External 
validation metrics (e.g., mutual 
information, purity, Rand index), 
when ground truth labels are 
available, and Internal validation 
metrics (e.g., Davies-Bouldin index, 
Silhouette index, Homogeneity). The 
reported results of internal validation 
metrics should be discussed [72]  

4. Image segmentation performance, 
depending on the specific task, should 
be reported in terms of metrics like 
[73]: accuracy-based metrics (e.g., 
Pixel accuracy, Jaccard Index, Dice 
Coefficient), distance-based metrics 
(e.g., mean absolute, or maximum 
difference), or area-based metrics (e. 

○ ○ ○ ○ ○ ○  

Table 1 (continued ) 

Requirement Authors Reviewers  

NA No Yes OK mR MR 

g., true positive fraction, true negative 
fraction, false positive fraction, false 
negative fraction).  

5. Reinforcement learning performance, 
depending on the specific task, should 
be reported in terms of metrics like 
[74]: Fixed-Policy Regret, Dispersion 
across Time, Dispersion across Runs, 
Risk across Time, Risk across Runs, 
Dispersion across Fixed-Policy Roll-
outs, Risk across Fixed-Policy 
Rollouts. 

The above estimates should be expressed, 
whenever possible, with their 95% (or 
90%) confidence intervals (CI), or with 
other indicators of variability [36], with 
respect to the evaluation metrics 
reported. In this case, the authors should 
report which methods were applied for 
the computation of the confidence 
intervals (e.g., whether k-fold CV or 
bootstrap was applied, normal 
approximation). When comparing 
multiple models, the authors should 
discuss the statistical significance of the 
observed differences [75] (e.g., through 
CI comparisons, or hypothesis testing). 
When comparing multiple regression 
models, a Taylor diagram [76] could be 
reported and discussed. 
23. Are some relevant errors described? 

The authors should describe the 
characteristic of some noteworthy 
classification errors or cases for which 
the regression prediction was much 
higher (>2×) than the MAE. If these 
cases represent statistical outliers for 
some covariates, the authors should 
comment on that. To detect relevant 
cases, the authors could focus on those 
cases on which the inter-rater 
agreement (either re ground truth or by 
comparing human vs. model’s 
performance) is lowest. 

○ ○ ○ ○ ○ ○  

Deployment 
24. Is the target user indicated? (e.g., 

clinician, radiologist, hospital 
management team, insurance 
company, patients) §

○ ○ ○ ○ ○ ○ 

25. (classification models) Is the utility of 
the model discussed? The authors 
should report the performance of a 
baseline model (e.g., logistic 
regression, Naive Bayes). Additionally, 
the authors could report the Net Benefit 
[77] or similar metrics and present 
utility curves [78]. In particular, the 
authors are encouraged to discuss the 
selection of appropriate risk thresholds  
[79]; the relative value of benefits (true 
positives/negatives) and harms (false 
positives/negatives); and the clinical 
utility of the proposed models [25]. 

○ ○ ○ ○ ○ ○ 

26. Is information regarding model 
interpretability and explainability 
available [80] (e.g., feature 
importance, interpretable surrogate 
models, information about the model 
parameters)? Claims of “high” or 
“adequate” model interpretability (e.g., 
by means of visual aids like decision 
trees, Variable Importance Plots or 
Shapley Additive Exlanations Plots 

○ ○ ○ ○ ○ ○ 

(continued on next page) 
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has been proposed should be mandatorily addressed or considered as 
good reasons for rejecting the manuscript, and particularly so in the case 
the involved item is considered high priority (in bold) or if many of the 
requirements were considered inadequately addressed. Authors can help 
editors and reviewers by attaching the checklist to their manuscript and 
indicating which items have been addressed and which items are 
missing (and why). 

1. The IJMEDI checklist for assessment of medical AI 

To download a copy of the above checklist, see: https://zenodo. 
org/record/4835800#.YLDlaaGxVPY. 

Summary Points 

What was already known?  

• Recent studies reported on common pitfalls and challenges in the 
development of medical ML systems, highlighting their general lack 
of reproducibility and reliability;  

• Several proposals for reporting guidelines have been proposed in the 
literature to address these challenges and improve the quality of ML 
studies aimed at supporting clinical practice; 

What does this study adds to our knowledge?  

• We propose a comprehensive checklist for the self-assessment and 
evaluation of medical ML papers, encompassing a set of 30 
requirements; 

• The proposed checklist encompasses requirements and recommen-
dations taken from previous proposals, and it further describes 
quality criteria related to the performance, reliability, reproduc-
ibility, and reporting standards of medical ML studies, by also 
providing relevant references to the literature of interest. 

Credit authorship contribution statement 
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Table 1 (continued ) 

Requirement Authors Reviewers  

NA No Yes OK mR MR 

(SHAP) [81]) or model causability [82] 
should always be supported by some 
user study, even qualitative or 
questionnaire-based [83]. In the case 
surrogate models were applied, the 
authors should report about their 
fidelity [84,85] 

27. Is there any discussion regarding 
model fairness, ethical concerns or risks 
of bias [25,86] (for a list of clinically 
relevant biases, refer to [87])? If 
possible, the authors should report the 
model performance stratified for 
particularly relevant population strata  
[88] (e.g., model performance on male 
vs. female subjects, or on minority 
groups) 

○ ○ ○ ○ ○ ○ 

28. Is any point made about the 
environmental sustainability of the 
model, or about the carbon footprint  
[89], of either the training phase or 
inference phase (use) of the model? If 
the answer is yes, then such a footprint 
should be expressed in terms of carbon 
dioxide equivalent (CO2eq) and details 
about the estimation method should be 
given. Any efforts to this end will be 
appreciated, including those based on 
tools available onlinea, as well as any 
attempts to popularise this concept, e. 
g., through equivalences with the 
consumption of everyday devices such 
as smartphones or kilometres travelled 
by a fossil-fuelled carb 

○ ○ ○ ○ ○ ○ 

29. Is code and data shared with the 
community [62,90]? § If not, are 
reasons given? If code and data are 
shared, institutional repositories such 
as Zenodo should be preferred to 
private-owned repositories (arxiv, 
GitHub). If code is shared, specification 
of dependencies should be reported and 
a clear distinction between training 
code and evaluation code should be 
made. The authors should also state 
whether the developed system, either 
as a sand-box or as fully-operating 
system, has been made freely accessible 
on the Web. 

○ ○ ○ ○ ○ ○ 

30. Is the system already adopted in daily 
practice? If the answer is yes, the 
authors should report on where (setting 
name) and since when. Moreover, 
appreciated additions would regard: 
the description on the digitized 
workflow integrating the system; any 
comment about the level of use [25]; a 
qualitative assessment of the level of 
efficacy of the system’s contribution to 
the clinical process (e.g., [91,92]); any 
comment about the technical and staff 
training effort actually required [25]. If 
the answer is no, the authors should be 
explicit in regard to the point in the 
clinical workflow where the ML model 
should be applied, possibly using 
standard notation (e.g., BPMN). 
Moreover, the authors should also 
propose an assessment of the 
technology readiness of the described 
system, with explicit reference to the 
Technology Readiness Level 
frameworkc or to any adaptation of this 
framework to the AI/ML domain [93]. 

○ ○ ○ ○ ○ ○  

Table 1 (continued ) 

Requirement Authors Reviewers  

NA No Yes OK mR MR 

In either above cases (yes/no), the 
authors should report about the 
procedures (if any) for performance 
monitoring, model maintenance and 
updating [94].  

a https://mlco2.github.io/impact/.  

b https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator.  

c Technology readiness levels (TRL) – Extract from Part 19 – Commission 
Decision C (2014) 4995.  
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